Author: Kang, Y.W.
Paper Title Page
TUPPC054 Beam Acceleration by a Multicell RF Cavity Structure Proposed for Improved Yield in Hydroforming 1293
 
  • J.A. Holmes, Y.W. Kang
    ORNL, Oak Ridge, Tennessee, USA
  • A.E. Fathy, K.R. Shin
    University of Tennessee, Knoxville, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
We study the accelerating properties of a new multicell cavity structure with irises forming a rectangular aperture between the cavity cells. We are interested in this structure because, from a mechanical point of view, the rectangular iris may make possible a much improved structure quality using a hydroforming manufacturing process. RF analysis shows that the rectangular iris shape provides asymmetric transverse focusing per half RF period. If the horizontal and vertical rectangular irises are interleaved, the net transverse focusing can be increased. The present studies of the acceleration and transport properties of these cavities are conducted by tracking particles through time-dependent 3D cavity fields from CST MWS using the ORBIT Code.
 
 
WEPPC107 RF Distribution System for High Power Test of the SNS Cryomodule 2468
 
  • S.W. Lee, M. Broyles, M.T. Crofford, X. Geng, Y.W. Kang, S.-H. Kim, R.C. Peglow, C.L. Phibbs, W.H. Strong, A.V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
A four-way waveguide RF power distribution system for testing the SNS multi-cavity cryomodule to investigate the collective behavior has been developed. A single klystron operating at 805MHz in 60Hz 8% duty cycle powers the 4-way waveguide splitter to deliver up to 600 kW to Individual cavities. Each cavity is fed through a waveguide vector modulator at each splitter output with magnitude and phase control. Waveguide vector modulator consists of two quadrature hybrids and two motorized waveguide phase shifters. The phase shifters and the assembled waveguide vector modulators were individually tested and characterized for low power and high pulsed RF power in the SNS RF test facility. Precise calibrations of magnitude and phase are done to generate the look up tables (LUTs) to provide operation references during the cryomodule test. An IQ demodulator board was developed and utilized to generate 2-port magnitude and phase LUTs. PLC units were developed for mechanical control of the phase shifters. Labview software was programmed for the measurements and the system operation. LUT based operation algorithm was implemented into EPICS control for the cryomodule test stand.
 
 
THPPP068 Investigation of a Multi-cell Cavity Structure Proposed for Improved Hydroforming 3895
 
  • K.R. Shin
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.E. Fathy
    University of Tennessee, Knoxville, Tennessee, USA
  • J.A. Holmes, Y.W. Kang
    ORNL, Oak Ridge, Tennessee, USA
 
  A multi-cell cavity structure with rectangular coupling aperture between cavity cells is proposed. This investigation is to study the RF properties of such structure that may provide high yield in hydroforming. In mechanical point of view, the rectangular aperture iris may provide much improved structure quality in hydroforming since it can help to reduce the stress incurring within the sheet metal with improved structural malleability. The necking procedure can be easier because of greater perimeter in the iris geometry. Peak electric and magnetic fields per accelerating gradient may increase however, compared to traditional TESLA type elliptical cavity structure. The rectangular iris shape provides asymmetric transverse focusing per half RF period. If the horizontal and vertical rectangular irises are interleaved, the net transverse focusing may be achieved. 3D simulations with CST MWS have been carried out to analyze EM field properties and the cavity parameters.  
 
THPPP069 Double-Gap Rebuncher Cavity Design of SNS MEBT 3898
 
  • K.R. Shin
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.E. Fathy
    University of Tennessee, Knoxville, Tennessee, USA
  • Y.W. Kang
    ORNL, Oak Ridge, Tennessee, USA
 
  A double-gap rebuncher cavity has been studied through design and analysis with computer simulations. This cavity shape is a two cell abridged form of drift tube linac (DTL), instead an omega form of existing single gap elliptical cavity. The cavity operates in TM010 mode, likewise the commonly used single-gap cavities in some medium energy beam transport (MEBT) line of proton accelerators. The new cavity is more power efficient even with slightly lower Q factor because of utilization of two interactive gaps. The breakdown field can be lowered with adjustment of gap and tube length ratio. Electromagnetic, beam envelope, and thermal simulations are presented with comparison to the properties of the conventional elliptical cavity.