Author: Kadi, Y.
Paper Title Page
MOOBA02 Status and Future Perspectives of the HIE-ISOLDE Project at CERN 34
  • Y. Kadi, A.P. Bernardes, Y. Blumenfeld, S. Calatroni, R. Catherall, M.A. Fraser, B. Goddard, D. Parchet, E. Siesling, W. Venturini Delsolaro, D. Voulot, L.R. Williams
    CERN, Geneva, Switzerland
  The High Intensity and Energy (HIE)-ISOLDE project aims at several important upgrades of the present ISOLDE radioactive beam facility at CERN. The main focus lies in the energy upgrade of the post-accelerated radionuclide beams from 3 MeV/u up to 10 MeV/u through the addition of superconducting cavities. This will open the possibility of many new types of experiments including transfer reactions throughout the nuclear chart. The first stage of this upgrade involves the design, construction, installation and commissioning of two high-β cryomodules downstream of REX-ISOLDE, the existing post-accelerator. Each cryomodule houses five high-β sc cavities and one sc solenoid. Prototypes of the Nb-sputtered Quarter Wave Resonators (QWRs) cavities for the new superconducting linear accelerator have been manufactured and are undergoing RF cold tests. The project also includes a design study of improved production targets to accommodate the future increase of proton intensity delivered by the new LINAC4 proton driver. The project has been approved by CERN and its implementation started in January 2010. An overview of the project and the timeline will be presented.  
slides icon Slides MOOBA02 [7.044 MB]  
THPPP050 HIE-ISOLDE SC Linac: Operational Aspects and Commissioning Preparation 3853
  • D. Voulot, E. Bravin, M.A. Fraser, B. Goddard, Y. Kadi, D. Lanaia, A.S. Parfenova, M. Pasini, A.G. Sosa, F. Zocca
    CERN, Geneva, Switzerland
  In the framework of the HIE-ISOLDE project, the REX linac will be upgraded in stages to 5.5 MeV/u and 10 MeV/u using superconducting (SC) quarter-wave cavities. The linac lattice is now frozen and the beam dynamics has been checked. The beam properties at the output of the NC linac for the different stages have been measured and are compatible with the SC linac acceptance. The high-energy beam transfer design is being finalised and a study has been launched for a buncher/chopper system allowing 100 ns bunch spacing for time-of-flight measurements. A compact diagnostic box for the inter-cryomodule region is under development and a new Si-detector based monitor for energy and phase measurements has been tested.