Author: Borburgh, J.
Paper Title Page
MOPPD057 CERN PSB-to-PS Transfer Modifications for the 2 GeV Upgrade 493
 
  • W. Bartmann, J. Borburgh, S.S. Gilardoni, B. Goddard, A. Newborough, S. Pittet, R. Steerenberg
    CERN, Geneva, Switzerland
  • C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  Within the frame of the CERN PS Booster (PSB) energy upgrade from 1.4 to 2 GeV, the PSB to PS transfer line will be adapted for pulse-to-pulse modulated operation. A modified lattice is presented including a re-design of the switching dipole between ISOLDE and PS and additional collimators to protect the PS injection septum. Optics solutions optimized for small emittance LHC beams as well as for the large emittance high-intensity beams are shown.  
 
MOPPD059 Proposal of a Dummy Septum to Mitigate Ring Irradiation for the CERN PS Multi-Turn Extraction 499
 
  • M. Giovannozzi, H. Bartosik, D. Bodart, J. Borburgh, R.J. Brown, S. Damjanovic, S.S. Gilardoni, B. Goddard, C. Hernalsteens, M. Hourican, M. Widorski
    CERN, Geneva, Switzerland
 
  High activation of the magnetic extraction septum of the CERN PS machine was observed due to the losses of the continuous beam extracted via the Multi-Turn Extraction (MTE) method. The resulting activation is however incompatible with safe operation so a mitigation measure was required and found, namely the installation of a passive dummy septum to protect the actual one seems to provide the required reduction in activation in the extraction area. The shielded dummy septum is intended to absorb particles during the rise time of the MTE extraction kickers, avoiding the beam impact on the blade of the active magnetic extraction septum. The principle of the proposed modifications of the PS layout will be presented together with the studies aimed at finalising the new configuration.  
 
MOPPD081 Upgrade of the LHC Beam Dumping Protection Elements 556
 
  • W.J.M. Weterings, T. Antonakakis, B. Balhan, J. Borburgh, B. Goddard, C. Maglioni, R. Versaci
    CERN, Geneva, Switzerland
 
  The Beam Dumping System for the Large Hadron Collider comprises for each ring a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred meters further downstream, an absorber block. A mobile diluter (TCDQ) protects the superconducting quadrupole immediately downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters, in case of a beam dump that is not synchronized with the particle free gap or a spontaneous firing of the extraction kickers. Simulations have shown that an asynchronous dump of a 7 TeV nominal beam into the TCDQ absorber blocks could damage it. This paper describes the proposed changes to this device in order to maintain the protection for the downstream elements while reducing the risk of damaging the TCDQ in case of such a beam loss.  
 
TUPPR091 Status of the 160 MeV H Injection into the CERN PSB 2041
 
  • W.J.M. Weterings, B. Balhan, E. Benedetto, J. Borburgh, C. Bracco, C. Carli, B. Goddard, K. Hanke, B. Mikulec, A. Newborough, R. Noulibos, J. Tan
    CERN, Geneva, Switzerland
 
  The 160 MeV H beam from the LINAC4 will be injected into the 4 superimposed rings of the PS Booster (PSB) with an new H charge-exchange injection system. This entails a massive upgrade of the injection region. The hardware requirements and constraints, the performance specifications and the design of the H injection region are described.