Author: Savalle, A.
Paper Title Page
THCPA04 Development of a Safety Classified System with LabView and EPICS 1221
 
  • C.H. Haquin, P. Anger, D.J.C. Deroy, G. Normand, F. Pillon, A. Savalle
    GANIL, Caen, France
 
  The Spiral2 linear accelerator will drive high intensity beams, up to 5 mA and 200 kW at linac exit. In tuning phase, or when not used by the experimental areas, the beam will be stopped in a dedicated beam dump. To avoid excessive activation of this beam dump, in order to allow human intervention, a safety classified system had been designed to integrate the number of particles dropped in it within each 24 hours time frame. For each kind of beam, a threshold will be defined and as soon as the threshold is reached a beam cut-off will be sent to the machine protection system. This system, called SLAAF: System for the Limitation of the Activation of the beam dump (Arret Faisceau in French) rely on LabView and EPICS (Experimental Physics and Industrial Control) technology. This paper will describe the specification and development processes and how we dealt to meet both functional and safety requirements using two technologies not commonly used for safety classified systems.  
slides icon Slides THCPA04 [0.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA107 Safety Control of the Spiral2 Radioactive Gas Storage System 1629
 
  • Q. Tura, C. Berthe, O. Danna, M. Faye, A. Savalle, J. Suadeau
    GANIL, Caen, France
 
  The phase 1 of the SPIRAL2 facility, extension project of the GANIL laboratory, is under construction and the commissioning had started. During the run phases, radioactive gas, mainly composed of hydrogen, will be extracted from the vacuum chambers. The radioactive gas storage system function is to prevent any uncontrolled release of activated gas by storing it in gas tank during the radioactive decay, while monitoring the hydrogen rate in the tanks under a threshold. This confinement of radioactive materials is a safety function. The filling and the discharge of the tanks are processed with monostable valves, making the storage a passive safety system. Two separate redundant control subsystems, based on electrical hardware technologies, allow the opening of the redundant safety valves, according to redundant pressure captors, redundant di-hydrogen rate analyzers and limit switches of the valves. The redundancy of the design of the control system meets the single failure criterion. The monitoring of the consistency of the two redundant safety subsystems, and the non-safety control functions of the storage process, are then managed by a Programmable Logic Controller.  
poster icon Poster THPHA107 [0.530 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)