Author: Moraes, M.A.L.
Paper Title Page
TUSH203 System Identification and Control for the Sirius High-Dynamic DCM 997
 
  • R.M. Caliari, R.R. Geraldes, M.A.L. Moraes, G.B.Z.L. Moreno
    LNLS, Campinas, Brazil
  • R. Faassen, T.A.M. Ruijl, R.M. Schneider
    MI-Partners, Eindhoven, The Netherlands
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication
The monochromator is known to be one of the most critical optical elements of a synchrotron beamline. It directly affects the beam quality with respect to energy and position, demanding high stability performance and fine position control. The new high-dynamics DCM (Double-Crystal Monochromator) [1] prototyped at the Brazilian Synchrotron Light Laboratory (LNLS), was designed for the future X-ray undulator and superbend beamlines of Sirius, the new Brazilian 4th generation synchrotron [2]. At this kind of machine, the demand for stability is even higher, and conflicts with factors such as high power loads, power load variation, and vibration sources. This paper describes the system identification work carried out for enabling the motion control and thermal control design of the mechatronic parts composing the DCM prototype. The tests were performed in MATLAB/Simulink Real-Time environment, using a Speedgoat Real-Time Performance Machine as a real-time target. Sub-nanometric resolution and nanometric stability at 300 Hz closed loop bandwidth in a MIMO system were targets to achieve. Frequency domain identification tools and control techniques are presented in this paper.
 
poster icon Poster TUSH203 [4.885 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUSH203  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBPA03 The Back-End Computer System for the Medipix Based PI-MEGA X-Ray Camera 1149
 
  • H.D. de Almeida, D. P. Magalhaes, M.A.L. Moraes, J.M. Polli
    LNLS, Campinas, Brazil
 
  The Brazilian Synchrotron, in partnership with BrPhotonics, is designing and developing pi-mega, a new X-Ray camera using Medipix chips, with the goal of building very large and fast cameras to supply Sirius' new demands. This work describes the design and testing of the back end computer system that will receive, process and store images. The back end system will use RDMA over Ethernet technology and must be able to process data at a rate ranging from 50 Gbps to 100 Gbps per pi-mega element. Multiple pi-mega elements may be combined to produce a large camera. Initial applications include tomographic reconstruction and coherent diffraction imaging techniques.  
slides icon Slides THBPA03 [1.918 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THBPA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA214 Rapid Control Prototyping Tool for the Sirius High-Dynamic DCM Control System 1941
 
  • G.B.Z.L. Moreno, R.M. Caliari, R.R. Geraldes, M.A.L. Moraes
    LNLS, Campinas, Brazil
 
  Funding: The authors would like to gratefully acknowledge the funding by the Brazilian Ministry of Science, Technology, Innovation and Communication.
The monochromator is known to be one of the most critical optical elements of a synchrotron beamline. It directly affects the beam quality with respect to energy and position, demanding high stability performance and fine position control. The new high-dynamic double-crystal monochromator (HD-DCM) [1], prototyped at the Brazilian Synchrotron Light Laboratory (LNLS), was designed for the future X-ray undulator and superbend beamlines of Sirius, the new Brazilian 4th generation synchrotron [2]. At this kind of machine, the demand for stability is even higher and conflicts with factors such as high-power loads, power load variation, and vibration sources. To identify and ensure sufficient control of the dynamic behaviour of all subcomponents in the proto-type, an implementation in MATLAB/Simulink Real-Time environment in a Speedgoat Real-Time Perfor-mance Machine was developed. This approach enables rapid prototyping, by allowing a shared environment for system modeling and testing. The tool was developed in a modular architecture aiming at practical model itera-tion and platform migration to standard beamline con-trollers, which can prove portability and scalability fea-tures.
[*]R. R. Geraldes et. al., 'Método de controle de grau de liberdade em sistemas mecatrÃ’nicos e monocromador de duplo cristal'
[**]A. R. D. Rodrigues et al., 'Sirius Status Report'
 
poster icon Poster THPHA214 [3.339 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA214  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA215 A Control Architecture Proposal for Sirius Beamlines 1947
 
  • M.A.L. Moraes, R.M. Caliari, R.R. Geraldes, G.B.Z.L. Moreno, J.R. Piton, L. Sanfelici, H.D. de Almeida
    LNLS, Campinas, Brazil
 
  With the increased performance provided by 4th generation synchrotron light sources, precise motion control and event synchronization are essential factors to ensure experiment resolution and performance. Many advanced beamline systems, such as a new high-dynamic double crystal monochromator (HD-DCM), are under development for Sirius, the new machine under construction in Brazil. Among the expected performance challenges in such applications, complex coordinated movements during flyscans/continuous scans, hardware synchronization for pump­-and-­probe experiments and active noise suppression are goals to be met. Two architectures are proposed to cover general-purpose and advanced applications. The HD-DCM controller was implemented in a MATLAB/Simulink environment, which is optimized for RCP. Hence, its software must be adapted to a more cost-effective platform. One candidate controller is the NI cRIO. The portability of both MATLAB and NI PXI, the present standard control platform at LNLS, codes to cRIO is evaluated in this paper. Control resolution, acquisition rates and other factors that might limit the performance of these advanced applications are also discussed.  
poster icon Poster THPHA215 [1.516 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA215  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)