Author: Madisa, K.
Paper Title Page
TUDPL03 Control System Simulation Using DSEE High Level Instrument Interface and Behavioural Description 292
 
  • A.J.T. Ramaila, K. Madisa, N. Marais
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
  • A.S. Banerjee, P. Patwari, S. Roy Chaudhuri
    Tata Research Development and Design Centre, Pune, India
  • Y. Gupta
    National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune, India
 
  Funding: National Research Foundation of South Africa. National Centre for Radio Astronomy of India.
Development of KATCP based control systems for the KAT-7 and MeerKAT radio telescopes proved the value of a fully simulated telescope system. Control interface simulators of all telescope subsystems were developed or sourced from the subsystems. SKA SA created libraries to ease creation of simulated KATCP devices. The planned SKA radio telescope chose the TANGO controls framework. To benefit from simulation-driven development tango-simlib, an OSS Python library for data-driven development of TANGO device simulators, is presented. Interface simulation with randomly varying attributes only requires a POGO XMI file; more complex behaviour requires a simple JSON SIMDD (Simulator Description Datafile). Arbitrary behaviour is implemented selectively using Python code. A simulation-control interface for back-channel manipulation of the simulator for e.g. failure conditions is also generated. For the SKA Telescope Manager system an Eclipse DSEE (Domain Specific Engineering Environment) capturing the behaviour and interfaces of all Telescope subsystems is being developed. The DSEE produces tango-simlib SIMDD files, ensuring that the generated simulators match their formal specification.
 
video icon Talk as video stream: https://youtu.be/Ufpe_xsR8pY  
slides icon Slides TUDPL03 [2.877 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUDPL03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THSH201 Integration of MeerKAT and SKA Telescopes using KATCP/Tango Translators 1964
 
  • K. Madisa, N. Marais, A.J.T. Ramaila, L. Van den Heever
    SKA South Africa, National Research Foundation of South Africa, Cape Town, South Africa
 
  Funding: National Research Foundation of South Africa
The MeerKAT radio telescope control system uses the KATCP protocol and technology stack developed at SKA SA. The future SKA project chose the TANGO controls technology stack. However, MeerKAT and phase 1 of the SKA-mid telescope are intimately related: SKA-mid will be co-located with MeerKAT at the SKA SA Karoo site; the first SKA-mid prototype dishes will be tested using MeerKAT systems; MeerKAT will later be incorporated into SKA-mid. To aid this interoperation, TANGO to KATCP and KATCP to TANGO translators were developed. A translator process connects to a device server of protocol A, inspects it and exposes an equivalent device server of protocol B. Client interactions with the translator are proxied to the real device. The translators are generic, needing no device-specific configuration. While KATCP and TANGO share many concepts, differences in representation fundamentally limits the abilities of a generic translator. Experience integrating TANGO devices into the MeerKAT and of exposing MeerKAT KATCP interfaces to TANGO based tools are presented. The limits of generic translation and strategies for handling complete use cases are discussed.
 
slides icon Slides THSH201 [0.696 MB]  
poster icon Poster THSH201 [2.680 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THSH201  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)