
LMC Simulation Framework

Athanaseus Ramaila
Lize van den Heever

Katleho Madisa
Neilen Marais

This work is based on the research supported by the National Research Foundation
(through a flagship project of the SA-INDO collaboration). Any opinion, finding and

conclusion or recommendation expressed in this material is that of the author(s) and
the NRF does not accept any liability in this regard.

TUDPL03

(TUDPL03)

Outline

● Iteration 1
○ MeerKAT CAM using Tango simulators and protocol translators

● Iteration 2
○ Evaluate TANGO tool capabilities in the context of

a MeerKAT-like radio telescope

● Iteration 3
○ Improved Data-driven Simulation framework, including behaviour extension

● Iteration 4
○ Integrating SKA DSH into MeerKAT using protocol translators

ITERATION 1
MeerKAT CAM using Tango simulators

and protocol translators

Iteration 1 Learnings

- Generic TANGO -> KATCP translator works well
- KATCP "device model" mostly a superset of TANGO "device model"

- Easy to integrate TANGO devices in existing MeerKAT
control-and-monitoring system

- Allows for early SKA subsystems testing with MeerKAT,
e.g. integrating the first SKA dish and testing it in
MeerKAT

Evaluate TANGO tool capabilities
in the context of a MeerKAT-like radio telescope

ITERATION 2

Iteration 2 Learnings

- TANGO community ecosystem provides useful tools
- TANGO framework architecturally very similar to MeerKAT CAM

architecture

- Generic KATCP -> TANGO translator works OK
- Some KATCP "device model" features were hard to represent in TANGO
- Could potentially be addressed (pipes?)

- Potential use for SKA <-> KATCP interop

Improved Data-driven Simulator framework,
including behaviour extension

ITERATION 3

Why Simulated Devices
● Positive MeerKAT / KAT-7 experience

● Can be used by the SKA Element Consortia to develop LMC simulators

● Support early development work of Element LMCs (Local Monitor&Control)

● Also used in the SKA Telescope Manager (TM) test environment

● Enable SKA TM to support early Assembly, Integration and Verification efforts

● Easily configure fully simulated development environments
○ SKA Telescope Manager Development
○ Automated functional/ integration testing
○ Lab integration with partial simulation

Development / simulated MeerKAT Architecture
KATCP

KATCP comp

Simulated
Device

Simulator
Control
Interface

100%
simulated
@ control
interface

Tester or Automated Test
(simulate conditions via Simulator Control Interfaces)

How the Simulator is launched

Step 0
$ pip install tango-simlib

Step 2
$ tango-simlib-simulator-generator \
--sim-data-file Dish.xmi \
--sim-data-file Dish_SIMDD.json \
--device-name DishElement-DS \
--directory /usr/local/bin/

(to generate the TANGO device server script taking
the sim-data-files as command line parameters)

Step 3

auto-register
$ tango-simlib-launcher \
--name DSH/element/ap000 \
--class DishElement \ --name
DSH/element_ctrl/ap000 \ --class
DishElementControl \
--server-command DishElement-DS\
--server-instance dish-000 \
--port 1234

Specs Generate Launch SimInstall

Step 1
Basic Sim Spec (POGO xmi)
Complex Sim Spec (SimDD)

(xmi specify device API,
SimDD specify simulator behaviour)

If already registered in tango db
$ DishElement-DS dish-000

https://github.com/ska-sa/tango-simlib

https://github.com/ska-sa/tango-simlib

Simulator with a Simulator Controller Interface

Basic Simulators
● Uses only the Tango POGO interface generation tool (XMI file)
● Attributes are mapped to model quantities without writing any code
● Commands are mapped to default no-op model actions
● Simulation control interface included, used to manipulate the simulator and induce

conditions/failures

Complex Simulators
● Uses simulated device description format to describe simulator behaviour

(SimDD JSON file)
● Specify attribute parameters and quantity simulation types
● Override or Modify default command actions using the SimDD
● Custom action handler overrides can be coded in Python
● Simulation control interface, as above

Simulation Parameters

Basic attribute simulation categories:
● guassianSlewLimited - min/max bounds, mean value, slew_rate and update_period
● constantQuantity - initial_value, attribute_quality

Basic command simulation categories:
● Input parameter transform - Take an input parameter, applies a transform and place output in a temporary

variable
● Side effect - Simple action that can modify a simulation quantity or internal state variable
● Output return - Return value or exception

Complex Simulators
Simulator Data-Description file (SIMDD.json)

Override class

To simulate more complex
behaviour the commands
can be overridden by
implementing and specifying
an Override Class.

This allows for full flexibility
as the complete simulation
model can be replaced, if
required.

Override actions in the
override class are prefixed
with action then the name of
the command on the TANGO
device.

Iteration 3 Learnings

- Ported MeerKAT simulator+test interface model to TANGO
- Released as FOSS : https://github.com/ska-sa/tango-simlib

- Simple TANGO device simulators are easy to generate -
with API from POGO XMI files

- MeerKAT experience: covers 80% of use cases

- Complex simulators can leverage base functionality -
additional behaviour as per SIMDD.json spec

https://github.com/ska-sa/tango-simlib

Integrating SKA DSH into MeerKAT
using protocol translators

ITERATION 4

Integrate SKA DSH Element simulator in
MeerKAT

● Will be first (real) element to be integrated
● Prototype to be qualified with MeerKAT
● Preliminary DSH ICD available
● Ported the MeerKAT Antenna Positioner physical model to

tango-simlib based DSH simulator
● To prepare MeerKAT for DSH prototype:

○ Integrate DSH simulator with MeerKAT using
TANGO->KATCP translator

○ Update MeerKAT DSH proxy for specific DSH behaviour
where it differs from MeerKAT receptor behaviour

MeerKAT CAM system with TANGO integration

TANGO->KATCP translator

Translated Device

Tango -> KATCP 000

KATCP component

SKA DSH proxy

KATCP

TANGO

Dish Device

Connecting To Dish Simulator Device

KAT Client

Receptor Proxy

Translator

TANGO
->

KATCP

KATCP
TANGO

System component/tools (TM) connect via
the receptor proxy (LMC) not directly to DISH

The proxy is responsible for managing
devices and exposing their KATCP interface.

Allows simultaneous observation with
MeerKAT receptors and prototype DISH

Allows the rest of the MeerKAT CAM system
to interface with the DISH device.

SKA DISH Proxy
● Provides standardised MeerKAT/KAT-7 high-level interface

○ Development based on existing MeerKAT receptor proxy

Data-driven simulator tools

● DSEE: Generates Simulator Description files (SimDD)
○ https://gitlab.com/patwari.puneet.ska/MAC-SEEN

● tango-simlib: Simulator interface as per SimDD
and Controller interface to manipulate the simulator

○ https://github.com/ska-sa/tango-simlib

● mkat-tango: TANGO/KATCP Device Translators

See ICALEPCS PAPER TUDPL03 + POSTER THSH201

https://gitlab.com/patwari.puneet.ska/MAC-SEEN

Thank you!

