Author: Behrens, C.
Paper Title Page
MOPC37 Longitudinal Bunch Profile Reconstruction Using Broadband Coherent Radiation at FLASH 154
  • E. Hass
    Uni HH, Hamburg, Germany
  • C. Behrens, C. Gerth, B. Schmidt, M. Yan
    DESY, Hamburg, Germany
  • S. Wesch
    HZB, Berlin, Germany
  The required high peak current in free-electron lasers is realized by longitudinal compression of the electron bunches to sub-picosecond length. Measurement of the absolute spectral intensity of coherent radiation emitted by an electron bunch allows monitoring and reconstruction of the longitudinal bunch profile. To measure coherent radiation in the teraherz and infrared range a in-vacuum coherent radiation intensity spectrometer was developed for the free-electron laser in Hamburg(FLASH). The spectrometer is equipped with five consecutive dispersion gratings and 120 parallel readout channels: it can be operated either in short (5-44 um) or in long wavelength mode (45-430 um). Fast parallel readout permits the monitoring of coherent radiation from single electron bunches. Large wavelength coverage and superb absolute calibration of the device allows reconstruction of the longitudinal bunch profile using Kramers-Kronig based phase retrieval technique. The device is used as a bunch length monitor and tuning tool during routine operation at FLASH. Comparative measurements with radio-frequency transverse deflecting structure show excellent agreement of both methods.  
TUAL2 Commissioning the New LCLS X-band Transverse Deflecting Cavity with Femtosecond Resolution 308
  • P. Krejcik, F.-J. Decker, Y. Ding, J.C. Frisch, Z. Huang, J.R. Lewandowski, H. Loos, J.L. Turner, J.W. Wang, M.-H. Wang, J.J. Welch
    SLAC, Menlo Park, California, USA
  • C. Behrens
    DESY, Hamburg, Germany
  Funding: This work was supported by Department of Energy Contract No. DE-AC0276SF00515
The new X-band transverse deflecting cavity began operation in May 2013 and is installed downstream of the LCLS undulator. It is operated at the full 120 Hz beam rate without interfering with the normal FEL operation for the photon users. The deflected beam is observed on the electron beam dump profile monitor, which acts as an energy spectrometer in the vertical plane. We observe, on a pulse by pulse basis, the time resolved energy profile of the spent electron beam from the undulator. The structure is powered from a 50 MW X-band klystron, giving a 48 MV kick to the beam which yields a 1 fs rms time resolution on the screen. We have measured the longitudinal profile of the electron bunches both with the FEL operating and with the lasing suppressed, allowing reconstruction of both the longitudinal profile of the incoming electron beam and the time-resolved profile of the X-ray pulse generated in the FEL. We are immediately able to see whether the bunch is chirped and which parts of the bunch are lasing, giving us new insight into tuning the machine for peak performance. The performance of the system will be presented along with examples of measurements taken during LCLS operation.
slides icon Slides TUAL2 [9.210 MB]  
TUPC36 First Realization and Performance Study of a Single-Shot Longitudinal Bunch Profile Monitor Utilizing a Transverse Deflecting Structure 456
  • M. Yan, C. Behrens, C. Gerth, R. Kammering, A. Langner, F. Obier, V. Rybnikov
    DESY, Hamburg, Germany
  • J. Wychowaniak
    TUL-DMCS, Łódź, Poland
  For the control and optimization of electron beam parameters at modern free-electron lasers (FEL), transverse deflecting structures (TDS) in combination with imaging screens have been widely used as robust longitudinal diagnostics with single-shot capability, high resolution and large dynamic range. At the free-electron laser in Hamburg (FLASH), a longitudinal bunch profile monitor utilizing a TDS has been realized. In combined use with a fast kicker magnet and an off-axis imaging screen, selection and measurement of a single bunch out of the bunch train with bunch spacing down to 1us can be achieved without affecting the remaining bunches which continue to generate FEL radiation during user operation. Technical obstacles have been overcome such as suppression of coherent transition radiation from the imaging screen, the continuous image acquisition and processing with the bunch train repetition rate of 10Hz. The monitor, which provides the longitudinal bunch profile and length, has been used routinely at FLASH. In this paper, we present the setup and operation of the longitudinal bunch profile monitor as well as the performance during user operation.