TUD —  FEL Tech. & Hardware : Electron Diag., Timing, Synchronization, and Controls   (25-Aug-15   17:00—18:30)
Paper Title Page
TUD01 COTR Resistant Profile Monitor 554
 
  • H. Loos
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515
Electron beam accelerators used as drivers for short wavelength FELs need ultra-high brightness beams with small emittances and highly compressed bunch lengths. The acceleration and beam transport process of such beams leads to micro-bunching instabilities which cause the emergence of coherent optical transition radiation (COTR). The effect of COTR on profile monitors based on OTR or fluorescent screens can be quite detrimental to their intended use to measure beam sizes and profiles. This presentation will review past observations of the beam diagnostics issues due to COTR and discuss various mitigation schemes for profile monitors as well as present experience with such implementations.
 
slides icon Slides TUD01 [1.536 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUD02 Diffraction Radiation Monitor 561
 
  • Y. Taira
    AIST, Tsukuba, Japan
 
  Non-invasive beam diagnostics using a diffraction radiation (DR) has been developed at several electron accelerator facilities. Generation process of DR is similar to that of transition radiation (TR). TR is emitted when a charged particle passes through the boundary between two media with different dielectric constants. On the other hand, DR is emitted when it passes through in the vicinity of a boundary between two media. In the generation process of DR, the charged particle doesn't intersect the medium but its electric field intersects the medium. An aperture, a slit, and an edge are used for DR target. Optical wavelength of DR is usually used for beam diagnostics. One can evaluate energy, a transverse beam size, and a divergence of an electron beam by measuring a spatial distribution of DR. Moreover, coherent diffraction radiation with the wavelength of less than millimeter range is used for a bunch length measurement. In this conference, a theoretical background of DR and experimental results carried out at several facilities will be presented.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUD03 First Results of the SRF Gun Test for CeC PoP Experiment 564
 
  • I. Pinayev, Z. Altinbas, S.A. Belomestnykh, K.A. Brown, J.C. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, M. Harvey, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, T. Rao, J. Reich, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, R. Than, C. Theisen, J.E. Tuozzolo, E. Wang, G. Wang, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  We have started the first tests of the equipment for the coherent electron cooling proof-of-principle experiment. After tests of the 500 MHz normal conducting cavities we proceeded with the low power beam tests of a CW SRF gun. The results of the tests with record beam parameters are presented.  
slides icon Slides TUD03 [1.201 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUD04
Relative Bunch Length Measurements at MAX IV Linac  
 
  • F. Curbis, E. Mansten, D.F. Olsson, S. Thorin
    MAX-lab, Lund, Sweden
 
  The commission of the MAX IV linac recently started and among other features, some attention has been dedicated to the characterization of the bunch length compression. Instead of the most commonly used magnetic chicanes, in the MAX IV linac two double achromats can compress the photo-cathode beam from a few ps to hundred fs level. Since the linac is not yet equipped with dedicated diagnostics for absolute bunch measurements, we performed relative measurement of the bunch length. We take advantage of the transition radiation emitted by the bunch when crossing a ceramic gap discontinuity, which is situated after the bunch compressors. The signal is picked up by horn antennas and directed to diodes sensitive to different frequencies. In this contribution we show the first experimental results and the comparison with simulations of our specific geometry.  
slides icon Slides TUD04 [3.381 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)