Author: Yurkov, M.V.
Paper Title Page
MOC02 Optimization of a High Efficiency Free Electron Laser Amplifier 17
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs for increasing the radiation power. We present comprehensive analysis of the problem in the framework of one-dimensional and three-dimensional theory. We find that diffraction effects essentially influence on the choice of the tapering strategy. Our studies resulted in a general law of the undulator tapering for a seeded FEL amplifier as well as for SASE FEL.  
slides icon Slides MOC02 [24.462 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA02 Suppression of FEL Lasing by a Seeded Microbunching Instability 289
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school GRK1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brightness electron bunches driving free-electron lasers (FELs). In this contribution, we demonstrate suppression of FEL lasing induced by a laser-triggered microbunching instability at the free-electron laser FLASH. The interaction between the electron bunches and the 800-nm laser pulses takes place in an undulator upstream of the FEL undulators. A significant decrease of XUV photon pulse energies has been observed in coincidence with the laser-electron overlap in the modulator. We discuss the underlying mechanisms based on longitudinal space charge amplification (LSCA) [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
slides icon Slides TUA02 [14.298 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP021 Fundamental Limitations of the SASE FEL Photon Beam Pointing Stability 397
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  The radiation from SASE FEL has always limited value of the degree of transverse coherence. Two effects define the spatial coherence of the radiation: the mode competition effect, and the effect of poor longitudinal coherence. For the diffraction limited case we deal mainly with the effect of the poor longitudinal coherence leading to significant degradation of the spatial coherence in the post-saturation regime. When transverse size of the electron beam significantly exceeds diffraction limit, the mode competition effect does not provide the selection of the fundamental FEL mode, and spatial coherence degrades due to contribution of the higher azimuthal modes. Another consequence of this effect are fluctuations of the spot size and pointing stability of the photon beam. These fluctuations are fundamental and originate from the shot noise in the electron beam. The effect of pointing instability becomes more pronouncing for shorter wavelengths. Our study is devoted to the fundamental analysis of the effect and description of possible means for improving the degree of transverse coherence and the pointing stability.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)