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Tapering of seeded FEL amplifier in the presence of diffraction effects.

Optimal tapering of SASE FEL and the radiation properties in the post-
saturation regime.
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European Practical use of undulator tapering
XFEL

Undulator tapering is a useful mechanism for many practical applications (FEL prize
talk by Bill Fawley this morning) :

Positive tapering - undulator K decreases along the undulator length:

- Compensation of the beam energy loss due to spontaneous undulator radiation;
- Compensation of the energy chirp in the electron beam;
- Increase power of a high-gain FEL after saturation (post-saturation taper).

Negative tapering - undulator K increases along the undulator length:

- Compensation of the energy chirp in the electron beam;

- Suppression of the radiation from the main undulator for organization of effective
operation of afterburners (e.g., circular polarization).

- Application in the scheme of attosecond SASE FEL.
- Increase power of FEL oscillator.
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A concept of post-saturation undulator tapering

e Undulator tapering: originally proposed by [N.M. Kroll, P.L. Morton, and M.N.
Rosenbluth, IEEE J. Quantum Electronics, QE-17, 1436 (1981)] for increasing the
radiation power in the post-saturation regime preserving resonance condition:
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Fig. 1. The poderomotive potential F(y}. The case shown is for posi-
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Fig. 2. Trajectories in the 4, &y phase plane for y, > 0.

Fig. 3. Stable phase plane trajectories.

change in parameters is smafl. For small oscillations about .,

one can expand F(y) about ¥,. The motion for these orbits is
harmonic with period of oscillation

- Ul . Bhw
(kv + 5k} Vauay, cos ¥, 2 Nayay cos U,

(M = 2m/ky ).
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Undulator tapering in the presence of diffraction

European

XFEL effects

The problem of optimum undulator tapering in the presence of diffraction
effects is now a “hot” topic due to practical applications for X-ray FELs and
potential industrial applications.

Empirical tapering dependencies for known so far from the literature
are physically inconsistent with the asymptotical behavior of the
radiation power produced in the tapered section.

Here we present our view of the problem based on the recent findings:

Optimization of a high efficiency free electron laser amplifier, Phys. Rev. ST AB, 18,
030705 (2015),

The universal method for optimization of undulator tapering in FEL amplifiers, Proc.
of SPIE Vol. 9512 951219-1 (2015);

Statistical properties of the radiation from SASE FEL operating in a post-saturation
regime with and without undulator tapering, J. Modern Optics,
DOI:10.1080/09500340.2015.1035349 (2015).
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“*Optical guiding”’ limits on extraction efficiencies of single-pass,
tapered wiggler amplifiers”

W.M. Fawley*

Lawrence Berkeley National Laboratery, Universite of California, | Cvclviren Rd., Berkelev, CA 7200 USA

Abstract

Single-pass. tapered wiggler amplifiers have an attactive feature of being able. in theory at least, of extracting a lurge
portion of the electron beam energy into light. In circumstances where an aptical FEL wiggler length is significantly longer
than the Rayleigh length z, corresponding to the electron beam radius, diffraction losses must be controlled via the
phenomenon of optical guiding. Since the strength of the guiding depends upon the effective refructive index n exceeding
one. and since (1w — |} is inversely proportional to the optical electric field, there is a natral limiting mechanism w the
on-axis field strength and thus the rate at which energy may be extracted from the electron beam. In purticulae. the extraction
efficiency for a prebunched beam asymptotically grows lincarly with = rather than quadratically. We present analytical and
numerical simulation results concerning this behavior and discuss its applicability to various FEL designs including
oscillator/amplifier-radiator configurations.

It is well known from early studies that:

e Radiation power grows linearly with the undulator length for
the asymptote of thin electron beam (i.e., long undulator)

e Radiation power grows quadratically with the undulator length
for the asymptote of wide electron beam (i.e., short undula-
tor / initial stage of tapered regime).

Undulator tapering in the presence of diffraction

1.5 Noulivear Mode of Operation 25
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Assuming that a sienificant fraction of the particles is trapped in the regime

of coherent deceleration, we can estimate the power loss by the electron beam
in the tapered section az:
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Our eetimatos show that in the case of a thin g ®$1‘0] %um the radiation
leld, acting on the elecirons, = almoest cous Qﬁ aloggs the uul]ul@LJl EESTH
The radiation power grows linearly with he‘kenﬂ@f the tapered section.
Stap. Thus, we can conclude that the reﬂ?& of d@hierent deceleration of the
particles should take place only for d v of undulator tapering, ie.
the detuning (%) should change l@&lv ’% the & coordinate.

Let s (“Onﬁ]d(‘l the casa of a. @L@k‘ of the diffraction paramater,

B=Twri/csl. \00 Qie,

At the hagiuning of [hP%pOI &Eﬂnrm when f-h[, = I, we deal with
the case of a wide elec@h beaf and most of the radiation overlaps with the

alectron haam. W hPche ls b af the tapered sactinn increazes, the radiation
expands out of e‘le A beam. When ['2i0, > B we dlwava fall in the
vegiom when d@%at *r*h ara important, i.e. the aleetron heam beromes

thin with régpect %thp radiation beam. Thus, we come to the conc.usion
that the a.svmp\(stlmll\ stable regime of coherent decsleration should cecur
only for a linear' law of undulator tapering.
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Undulator tapering in the presence of diffraction

European

XFEL effects

The key element for understanding the physics of the undulator tapering are
the properties of the radiation from modulated electron beam.

Indeed, in the case of tapered FEL the beam bunching is frosen (particles are
trapped in the regime of coherent deceleration).

Thus, we deal with the electron beam modulated at the resonance wavelength.

If we know the radiation power of the modulated electron beam as function of the
undulator length, we know the law of the undulator tapering.

The problem of the radiation of modulated electron beam has been solved ten years
ago (Nucl. Instrum. and Methods A 539, 499 (2005)), and recently connected with
the problem of the undulator tapering (Phys. Rev. ST AB 18 (2015) 030705)).



ErreEaes Radiation of modulated electron beam

e Radiation power of modulated electron beam:

1.2 4 I I I 4
S T 3 5 51 1 \/\/\
W = YN KQf(z)z : f(2) = arctan (2/2)+ 2 " In (52 - 4) ::
e Thin and wide beam asymptote: 3 o8/
0.4 |
f(,%) — 77/2 for z2>1 (N < 1) , 0.2
f(z2)=z/4 for z k1 (N>1). >0 0.5 1.0 15 2.0

z/h

The Fresnel number: N = 2702 /(\z).

e Both asymptotes (of wide and thin electron beam) discussed in earlier
papers are well described by this expression. 1.5

e Asymptote of a wide electron beam corresponds to large values of Fresnel
number N, and the radiation power scales quadratically with the undu-  1.04
lator length, W o< 22

f(z)

e Asymptote of a thin electron beam corresponds to small values of the 0-51
Fresnel Number N, and the radiation power grows linearly with the un-
dulator length, W o< z. 0.0+
10°

e Undulator tapering should adjust detuning according to the energy loss
by electrons, and we find that the tapering law should be quadratic for
the case of wide electron beam, C oc W o 22, and linear for the case of
thin electron beam, C' o« W  z. (325) werwwourz
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e Radiation power of modulated electron beam:

W 22 I3al o K2 A3,
CAA

f(2) = arctan (3/2)+z ' In (22 i 4) :

f(2)z,
Thin and wide beam asymptote:

(N < 1),
(N> 1).

z>1
21

for

for

The Fresnel number: N = 270?/(\z).

e Asymptote of the wide electron beam works reasonably well for the values of
the Fresnel number N 2 1. Asymptote of the thin electron beam converges
pretty slowly, and reasonable accuracy is achieved for very small N < 0.01.

e Example for LCLS operating at the radiation wavelength of 0.15 nm and
1.5 nm. Transverse size of the electron beam is about 25 ym in both cases.

e The wide beam asymptote is applicable up to z >~ z,, >~ 26 m for wavelength
0.15 nm, and z ~ zy, =~ 2.6 m for operation at 1.5 nm wavelength. Here we
see general feature illustrating shortening with the radiation wavelength of
the applicability region of the wide beam asymptote.

e The thin beam asymptote becomes to be applicable at LCLS for z = 2500 m
(for wavelength 0.15 nm) and 260 m (for wavelength 1.5 nm). Note, that
for both practical examples the limit of thin electron beam is achieved only
for very long undulator, and exact formula should be used for calculation of
the radiation power for undulator length z > zyy.
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European Application of similarity techniques

XFEL

e In the framework of the three-dimensional theory the operation of the FEL am-
phﬁer is described by the diffraction parameter B, the energy spread parameter
A?F, the betatron motion parameter kg and detumng parameter C

~

B=2Tc’w/c, C=C/T, kzy=1/(pT), AL=(0x/E)?/p*

with the gam parameter I' = 4dmwp/A\,. For the case of "cold” electron beam,
A2 — 0, kﬁ — 0, the operation of the FEL amphﬁer is described by the

diffraction parameter B and the detuning parameter C.

e 'EL equations:

~

AV - . dP
=C+P
dz 5 dz
where P = (E — Ey)/(pEy), 2 = T'z, and U and ¢y are the amplitude and the
phase of the effective potential.
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e We normalize the radiation power to the saturation power, and undulator length to the field gain length. Then
we find that the radiation power before saturation exhibits similar behavior for all values of the diffraction

parameter B > 1.

e In view of: i) universal scaling of the FEL characteristics on the diffraction parameter B; ii) The Fresnel number
and the diffraction parameter has the same physical meaning, we find that optimum undulator tapering should

be:

. o 1 AN?
C = aap(2 — 20) [arctan (ﬁ) + Nln (W)] , N =

z

/8 tap
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— Global numerical optimization versus

;erErL the universal law of the undulator tapering

e First, we perform straightforward global optimization with three-dimensional,
time-dependent FEL simulation code FAST.

e Target of the optimization is maximum of the output power at 15 gain 7}
lengths after saturation. We divide undulator into many pieces and change 2%
detuning of all pieces independently. Number of sections is controlled to .
provide the result independent on the number of sections.

& (A) We choose the tapering law C(B, z) corresponding to the maximum
power at the exit of the whole undulator.

® (B) Then we fit parameters of the universal tapering law:

( 2
. 1 AN? Bia <
C = (2 — %) |arctan | — | + N1In | ——— . N =2 = 19
(2 ~ %) { <2N) <4N2 + 1)} | (2 — 2)
0
(z—zﬁ‘)/Lg
e Start of the undulator tapering z; is fixed by the global optimization proce-
dure, z2p = 2sat — 2L,.
: 0.8 C — Ko
e Another parameter of the problem, f,,, is rather well approximated with 06
the linear dependency on the diffraction parameter, [, = 8.5 x B. s
Foad
s (C) Remaining parameter, a,,, is plotted in Figure. It is a slow varying
function of the diffraction parameter B, and scales approximately to B'/? as °2

all other important FEL parameters including capture efficiency. 00, - - “ 2

Diffraction parameter B

e Thus, application of similarity techniques gives us an elegant way for the
general parametrical fit.
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Global numerical optimization versus

European ¥ the universal law of the undulator tapering and the rational fit

XFEL

e Universal tapering law:

A 1 AN?
— . (35— 3 : 7 S
C' = quap(2 — 20) {arctan (2N> + N ln (4[\72 " 1)] , 005
with Fresnel number N fitted by N = f.,/(2 — 2p). Start of the —
undulator tapering is zg = 254t —2L,. Parameter Sy, is fiqp = 8.5 X B. 0.04

e Expression for the universal tapering law has quadratic dependence in
z for small values of z (limit of the wide electron beam), and linear = §g,.
dependence in z for large values of z (limit of the thin electron beam).

It is natural to try a fit with a rational function which satisfies both

asymptotes. The simplest rational fit is: 0001
‘ 0 10 20 30 40
C, _ (l(7: - 20>2 Diffraction parameter B
30 e
e The coefficients a and b are the functions of the diffraction parameter &
B, and are plotted in the Figure. Start of the undulator tapering is - 201
set to the value zyp = 250+ — 2L, suggested by the global optimization g§
procedure. c
= 10+
e Lower Figure: evolution along the undulator of the reduced radiation
power 77 = W/(pWheam) (solid curves) and of the detuning parameter 0
C' = C/T' (dashed curves). Color codes: black - FEL with global
optimization of undulator tapering, red - fit with the universal tapering
law, green - fit with the rational function. The value of the diffraction
parameter is B = 10. @ oo
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European I Trapping process for optimum tapering: how it works

XFEL

Top: tapered :_| N

‘ | ‘ | Color codes:
Bottom: untapered : radial position

|E(rY/E(0)]

e The particles in the core of the beam red, green, blue color) are trapped most effectively.
Nearly all particles located at the edge of the electron beam (braun, yellow color) leave
the stability region very soon. The trapping process lasts for a several field gain lengths
when the trapped particles become to be isolated in the trapped energy band for which
the undulator tapering is optimized further. Non-trapped particles continue to populate
low energy tail of the energy distribution.

e Experimental observation at LCLS: energy distribution of non-trapped particles is not
uniform, but represent a kind of energy bands. Our simulations give a hint on the origin
of energy bands which are formed by non-trapped particles. This is the consequence of
nonlinear dynamics of electrons leaving the region of stability. Note that a similar effect
can be seen in the early one-dimensional studies.
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Tutorial example from a book (1D FEL theory)
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XFpEL SASE FEL: Optimum tapering

e Radiation of SASE FEL consists of wavepackets (spikes). In the exponential regime of
amplifications wavepackets interact strongly with the electron beam, and their group ve-
locity dw/ d k visibly differs from the velocity of light, and the slippage of the radiation
with respect to the electron beam is by several times less than kinematic slippage. l.e.,
wavepackets are closely connected with the modulations of the electron beam current. 0.0

10° 102 107 10° 10 102
< P(z) > P(3), P.(3)

(vgv M (ev,)
o
N

Z

§ = pw(z/v, —t)

e When the amplification process enters nonlinear (tapering) stage, the group velocity of the wavepackets approaches to
the velocity of light, and the relative slippage approaches to the kinematic one. When a wavepacket advances such that
it reaches the next area of the beam disturbed by another wavepacket, we can easily predict that the trapping process
will be destroyed, since the phases of the beam bunching and of the electromagnetic wave are uncorrelated in this case.

e Typical scale for the destruction of the tapering regime is coherence length, and the only physical mechanism we can
use is to decrease the group velocity of wavepackets. This happens optimally when we trap maximum of the particles
in the regime of coherent deceleration, and force these particles to interact as strong as possible with the electron beam.
Thus, the strategy is exactly the same as we used for optimization of seeded FEL.

e Conditions of the optimum tapering for SASE are similar to those of the seeded case. Start of the tapering is by two
field gain lengths before the saturation. Parameter (3, is the same, 8.5 x B. The only difference is the reduction of the
parameter o, by 20% which is natural if one remember statistical nature of the wavepackets. (3%) @ vemmoun
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XFpEL SASE FEL, optimum tapering: how it works

Left: slice radiation power and
energy loss; phase space

Right: bunching, average power,
particle energy spectrum

Bunching

. 1 4N?
C' = aap(z2 — 20) larctan (—) 4+ Nln (

2N 4N? 41
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e Practical example: European XFEL, SASE3, radiation wave-
length 1.6 nm.

untapered case

e General feature of tapered regime is that both, spatial and
temporal coherence degrade in the nonlinear regime, but a
bit slowly than for untapered case.

e Peak brilliance grows due to the growth of the radiation
power, and reaches maximum value in the middle of tapered
section. Benefit in the peak brilliance is about factor of 3
with respect to untapered case.

e Spatial corellations and degree of transverse coherence:

(E(?ﬂ, z,t)E*(Flbz,t)) |
{E@L, 2 OP)E(™ L, 2, f)ml/z

/Yl(fr_’la FIJ.& 2, t) -

_ S (P ) PIEO) () A7 d iy
[JI(7)d 7. ]? ’

e Temporal corellations and coherence time:

¢

Properties of the radiation: Optimum tapered versus
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¢, TC/'CC

Power and brilliance
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We derived the general law for optimum undulator tapering in the presence of
diffraction effects. It is simple analytical expression with two fitting coefficients

Key elements are knowledge of the radiation properties of modulated electron beam
and application of similarity techniques in FEL theory.

Investigation of the case of “cold” electron beam allows one to isolate diffraction
effects in the most clear form, and the optimum tapering law is the function of the
only diffraction parameter B.

Extension of this approach with including energy spread and emittance effects is
straightforward and will result just in corrections to the fitting coefficients without
changing the general law as we demonstrated for the case of SASE FEL.

Thank you very much for your attention!



