Author: Han, B.
Paper Title Page
MOP018 Comparison of Astra Simulations With Beam Parameter Measurements at the Kaeri Ultrashort Pulse Facility 74
 
  • H.W. Kim, I.H. Baek, M.S. Chae, B.A. Gudkov, B. Han, K.H. Jang, Y.U. Jeong, Y. Kim, K. Lee, S.V. Miginsky, S. H. Park, S. Park, S. Setiniyaz, N. Vinokurov
    KAERI, Daejon, Republic of Korea
  • K.H. Jang, Y.U. Jeong, H.W. Kim, K. Lee, S.V. Miginsky, S. H. Park, N. Vinokurov
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • S.V. Miginsky, N. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  An RF-photogun-based linear accelerator for ultra-short electron beam generation is under construction at Korea Atomic Energy Research Institute (KAERI). This facility are mainly composed of an 1.5 cell S-band (2856 MHz) RF gun, a travelling wave type linac 3 m long and 90-degree achromatic bends. The emitted electron beams are accelerated in high RF field to ~ 3 MeV. The electrons can be deflected by a first bending magnet installed right after the RF gun. Each beamline has second bending magnet similar to the first one and three quadrupoles between the bending magnets. Two bending and three quadrupole magnets compose the 90-degree achromatic bend. The deflected electron beams will be used for ultrafast electron diffraction (UED) experiments. We have performed computer simulation using ASTRA code to investigate the electron beam dynamics in the system with the input data of bead tested gun electric field distribution and the magnetic fields of the magnets. We will present the simulated and experimental electron beam parameters.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP036 Femtosecond Synchronization of 80-MHz Ti:Sapphire Photocathode Laser Oscillator with S-Band RF Oscillator 105
 
  • H. Yang, C. Jeon, K. Jung, J. Kim
    KAIST, Daejeon, Republic of Korea
  • H. Chung
    Korea University Sejong Campus, Sejong, Republic of Korea
  • B. Han, Y.U. Jeong
    KAERI, Daejon, Republic of Korea
 
  Precision synchronization between lasers and RF sources in free-electron lasers (FELs) and ultrafast electron diffraction (UED) systems is becoming more important. There have been intense research and development toward femtosecond synchronization of lasers and RF sources in the last decade. Most of the previous approaches at large-scale FELs have used cw lasers or low-jitter mode-locked lasers at telecomm wavelength as the master oscillator and distributed the timing signals via stabilized fiber links. However, for smaller-scale FELs and UED, this approach may be a complex and high-cost method. In this work, we studied the possibility of using the commercial Ti:sapphire photocathode laser as the optical master oscillator as well. For its use in UED and FELs, we synchronized the 80-MHz Ti:sapphire photocathode laser oscillator to a 2.856-GHz RF source (used for RF-photogun) with 50-fs precision. Some interesting findings are following. First, intrinsic rms timing jitter of the used photocathode laser is 2.6 fs [10 kHz-10 MHz], which sets the fundamental limit in synchronization. Second, timing jitter in 100 Hz-1 kHz in photocathode laser is so severe (e.g., ~40 fs even feedback control is applied), so that it will require additional external-cavity control for achieving sub-10-fs precision. By addressing this issue, we are currently working toward 10-fs precision.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP063 Transverse Emittance Measurement of KAERI Linac with Thick Lens Quadrupole Scan 185
 
  • S. Setiniyaz, I.H. Baek, M.S. Chae, B.A. Gudkov, B. Han, K.H. Jang, Y.U. Jeong, H.W. Kim, S.V. Miginsky, J.H. Nam, S. Park, N. Vinokurov
    KAERI, Daejon, Republic of Korea
  • S.V. Miginsky, N. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  The UED (Ultrafast Electron Diffraction) beamline of KAERI (Korea Atomic Energy Research Institute) WCI (World Class Institute) Center has been completed and successfully commissioned. Transverse emittance of the electron beam was measured at the entrance of the UED chamber with the quadrupole scan technique. In this technique, larger drift distance between the quad and screen is preferred because it gives better thin lens approximation. A space charge dominated beam however, will undergo emittance growth in the long drift caused by the space charge force. We suggest mitigating this growth by introducing quadrupole scan with short drift and without thin lens approximation. We shall discuss the measurement process and results.  
poster icon Poster MOP063 [1.287 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)