Author: Loos, H.
Paper Title Page
TUB03 FEL Overcompression in the LCLS 337
  • J.L. Turner, F.-J. Decker, Y. Ding, Z. Huang, R.H. Iverson, J. Krzywinski, H. Loos, A. Marinelli, T.J. Maxwell, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.J. Welch, F. Zhou
    SLAC, Menlo Park, California, USA
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Overcompression of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center is studied. The studies and operational implications are summarized in this talk.
slides icon Slides TUB03 [4.493 MB]  
Soft X-ray Self-seeding Setup and Results at LCLS  
  • D.F. Ratner, J.W. Amann, D.K. Bohler, M. Boyes, D. Cocco, F.-J. Decker, Y. Ding, D. Fairley, Y. Feng, J.B. Hastings, P.A. Heimann, Z. Huang, J. Krzywinski, H. Loos, A.A. Lutman, G. Marcus, A. Marinelli, T.J. Maxwell, S.P. Moeller, P.A. Montanez, D.S. Morton, H.-D. Nuhn, D.R. Walz, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
  • K. Chow, L.N. Rodes
    LBNL, Berkeley, California, USA
  • U. Flechsig
    PSI, Villigen PSI, Switzerland
  • S. Serkez
    DESY, Hamburg, Germany
  The soft X-ray self seeding program was designed to provide near transform-limited pulses in the range of 500 eV to 1000 eV. The project was a three-way collaboration between SLAC, Lawrence Berkeley National Lab, and the Paul Scherrer Institute in Switzerland. Installation finished in the Fall of 2013, and after the early stages of commissioning we have measured up to 0.5mJ pulse energy and resolving powers of up to 5000 across the design wavelength range, representing a several-fold increase in the brightness compared to the normal LCLS operating mode. Future work will aim to increase the total pulse energy and establish self-seeding as a robust user operation mode.  
slides icon Slides TUC02 [10.464 MB]  
THB04 Electron Beam Diagnostics and Feedback for the LCLS-II 666
  • J.C. Frisch, P. Emma, A.S. Fisher, P. Krejcik, H. Loos, T.J. Maxwell, T.O. Raubenheimer, S.R. Smith
    SLAC, Menlo Park, California, USA
  Funding: work supported by DOE contract DE-AC02-76-SF00515
The LCLSII is a CW superconducting accelerator driven, hard and soft X-ray Free Electron Laser which is planned to be constructed at SLAC. It will operate with a variety of beam modes from single shot to approximately 1 MHz CW at bunch charges from 10pc to 300pC with average beam powers up to 1.2 MW. A variety of types of beam instrumentation will be used, including stripline and cavity BPMS, fluorescent and OTR based beam profile monitors, fast wire scanners and transverse deflection cavities. The beam diagnostics system is designed to allow tuning and continuous measurement of beam parameters, and to provide signals for fast beam feedbacks.
slides icon Slides THB04 [1.501 MB]  
THP025 Linear Accelerator Design for the LCLS-II FEL Facility 743
  • P. Emma, J.C. Frisch, Z. Huang, H. Loos, A. Marinelli, T.J. Maxwell, Y. Nosochkov, T.O. Raubenheimer, L. Wang, J.J. Welch, M. Woodley
    SLAC, Menlo Park, California, USA
  • J. Qiang, M. Venturini
    LBNL, Berkeley, California, USA
  • A. Saini, N. Solyak
    Fermilab, Batavia, Illinois, USA
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515.
The LCLS-II is an FEL facility proposed in response to the July 2013 BESAC advisory committee, which recommended the construction of a new FEL light source with a high-repetition rate and a broad photon energy range from 0.2 keV to at least 5 keV. A new CW 4-GeV electron linac is being designed to meet this need, using a superconducting (SC) L-band (1.3 GHz) linear accelerator capable of operating with a continuous bunch repetition rate up to 1 MHz at ~16 MV/m. This new 700-m linac is to be built at SLAC in the existing tunnel, making use of existing facilities and providing two separate FELs, preserving the operation of the existing FEL, which can be fed from either the existing copper or the new SC linac. We briefly describe the acceleration, bunch compression, beam transport, beam switching, and electron beam diagnostics. The high-power and low-level RF, and cryogenic systems are described elsewhere.
poster icon Poster THP025 [0.627 MB]  
THP031 Further Understanding the LCLS Injector Emittance 774
  • F. Zhou, K.L.F. Bane, Y. Ding, Z. Huang, H. Loos
    SLAC, Menlo Park, California, USA
  Funding: US DOE under contract No. DE-AC02-76SF00515
Notable COTR effect from the LCLS laser heater chicane is recently observed at the LCLS injector OTR screen, used for routine emittance measurements. The emittance with the OTR screen is under-estimated by about 30% compared to the values with the wire scanner located next to the OTR screen. The emittance with the OTR and wire scanner is compared and relevant analyses are presented. Slice emittance upstream of the LCLS BC1 is measured using a traditional transverse cavity. Recently, slice emittance downstream of the BC1 is able to be measured with a newly developed technique, using a collimator located in the middle of the BC1. The parasitic effects of using the collimator for slice emittance measurement are evaluated. The slice emittance before and after the BC1 is compared. The dependence of the slice emittance on the linearizer’s transverse offset and CSR effect from the BC1 is discussed.