Soft X-ray Self Seeding at LCLS FEL14

ARTICLES

PUBLISHED ONLINE: 20 OCTOBER 2013 | DOI: 10.1038/NPHOTON.2013.277

Two-stage seeded soft-X-ray free-electron laser

E. Allaria¹, D. Castronovo¹, P. Cinquegrana¹, P. Craievich^{1†}, M. Dal Forno^{1,2}, M. B. Danailov¹, G. D'Auria¹,
A. Demidovich¹, G. De Ninno^{1,3}, S. Di Mitri¹, B. Diviacco¹, W. M. Fawley¹*, M. Ferianis¹, E. Ferrari¹,
L. Froehlich¹, G. Gaio¹, D. Gauthier^{1,3}, L. Giannessi^{1,4}*, R. Ivanov¹, B. Mahieu^{1,5}, N. Mahne¹, I. Nikolov¹,
F. Parmigiani^{1,2}, G. Penco¹, L. Raimondi¹, C. Scafuri¹, C. Serpico¹, P. Sigalotti¹, S. Spampinati^{1,3},
C. Spezzani¹, M. Svandrlik¹, C. Svetina^{1,2}, M. Trovo¹, M. Veronese¹, D. Zangrando¹ and M. Zangrando^{1,6}

ARTICLES

PUBLISHED ONLINE: 20 OCTOBER 2013 | DOI: 10.1038/NPHOTON.2013.277

Two-stage seeded soft-X-ray free-electron laser

E. Allaria¹, D. Castronovo¹, P. Cinquegrana¹, P. Craievich^{1†}, M. Dal Forno^{1,2}, M. B. Danailov¹, G. D'Auria¹,
A. Demidovich¹, G. De Ninno^{1,3}, S. Di Mitri¹, B. Diviacco¹, W. M. Fawley^{1*}, M. Ferianis¹, E. Ferrari¹,
L. Froehlich¹, G. Gaio¹, D. Gauthier^{1,3}, L. Giannessi^{1,4*}, R. Ivanov¹, B. Mahieu^{1,5}, N. Mahne¹, I. Nikolov¹,
F. Parmigiani^{1,2}, G. Penco¹, L. Raimondi¹, C. Scafuri¹, C. Serpico¹, P. Sigalotti¹, S. Spampinati^{1,3},
C. Spezzani¹, M. Svandrlik¹, C. Svetina^{1,2}, M. Trovo¹, M. Veronese¹, D. Zangrando¹ and M. Zangrando^{1,6}

ARTICLES

PUBLISHED ONLINE: 20 OCTOBER 2013 | DOI: 10.1038/NPHOTON.2013.277

Two-stage seeded soft-X-ray free-electron laser

E. Allaria¹, D. Castronovo¹, P. Cinquegrana¹, P. Craievich^{1†}, M. Dal Forno^{1,2}, M. B. Danailov¹, G. D'Auria¹,
A. Demidovich¹, G. De Ninno^{1,3}, S. Di Mitri¹, B. Diviacco¹, W. M. Fawley¹*, M. Ferianis¹, E. Ferrari¹,
L. Froehlich¹, G. Gaio¹, D. Gauthier^{1,3}, L. Giannessi^{1,4}*, R. Ivanov¹, B. Mahieu^{1,5}, N. Mahne¹, I. Nikolov¹,
F. Parmigiani^{1,2}, G. Penco¹, L. Raimondi¹, C. Scafuri¹, C. Serpico¹, P. Sigalotti¹, S. Spampinati^{1,3},
C. Spezzani¹, M. Svandrlik¹, C. Svetina^{1,2}, M. Trovo¹, M. Veronese¹, D. Zangrando¹ and M. Zangrando^{1,6}

ARTICLES

E. Allaria¹, D. Castronovo¹, P. Cinquegrana¹, P. Craievich^{1†}, M. Dal Forno^{1,2}, M. B. Danailov¹, G. D'Auria¹, A. Demidovich¹, G. De Ninno^{1,3}, S. Di Mitri¹, B. Diviacco¹, W. M. Fawley^{1*}, M. Ferianis¹, E. Ferrari¹, L. Froehlich¹, G. Gaio¹, D. Gauthier^{1,3}, L. Giannessi^{1,4}*, R. Ivanov¹, B. Mahieu^{1,5}, N. Mahne¹, I. Nikolov¹, F. Parmigiani^{1,2}, G. Penco¹, L. Raimondi¹, C. Scafuri¹, C. Serpico¹, P. Sigalotti¹, S. Spampinati^{1,3}, C. Spezzani¹, M. Svandrlik¹, C. Svetina^{1,2}, M. Trovo¹, M. Veronese¹, D. Zangrando¹ and M. Zangrando^{1,6}

SLAC

Self-Seeding: The FEL seeds itself!

SLAC

Self-Seeding: The FEL seeds itself!

SLAC

Self-Seeding: The FEL seeds itself!

Two components:

a) Monochromator selects narrow-bandwidth seed

SLAC

Self-Seeding: The FEL seeds itself!

Two components:

a) Monochromator selects narrow-bandwidth seed

Self-Seeding: The FEL seeds itself!

Two components:

- a) Monochromator selects narrow-bandwidth seed
- b) Chicane resets electron bunch to shot noise, matches delay of xrays, and steers e- around optics

Self-Seeding: The FEL seeds itself!

Two components:

- a) Monochromator selects narrow-bandwidth seed
- b) Chicane resets electron bunch to shot noise, matches delay of xrays, and steers e- around optics

Soft X-ray Self-Seeding Design

Y. Feng et al., FEL12, Nara, Japan, 2012. D. Cocco et al., Proc. SPIE, 2013.

Physics requirements for SXRSS

Physics and Location Constraints for Mono:

- 1) Provide resolving power greater than or equal to 5000
- 2) Energy range 500-1000 eV
- 3) Fit mono in 4m space (single undulator)
- 4) X-rays delayed less than 1 ps (to fit chicane)

Physics requirements for SXRSS

Engineering Challenges

- 1. 3 optics chambers, 2 diagnostic chambers, 9 motors
- 2. Tight machine, alignment, and motion constraints
- 3. 'Challenging' schedule

Big thanks to N. Rodes, K. Chow, P. Montanez and the machine, tech, and alignment teams that made this possible

Optics design for SXRSS

Optics designed by PSI, manufactured in Germany

Mechanical design for SXRSS

Optics chambers designed by LBNL

Mechanical design for SXRSS

Commissioning Challenges

- 1. Setup SASE FEL in first section (not too much, not too little)
- 2. Track X-rays through the 5-component Monochromator
- 3. Measure positions of both electrons and X-rays
- 4. Overlap X-rays and electrons transversely
- 5. Overlap X-rays and electrons temporally

Commissioning Challenges

Coherent radiation an obstacle for overlap diagnostics

Damage concerns

Compromise between need to seed, and damage threshold

To much pulse energy destroys grating

-SLAC

Damage concerns

Compromise between need to seed, and damage threshold

Damage concerns

Compromise between need to seed, and damage threshold

Damage concerns

Compromise between need to seed, and damage threshold

SLAC

First seeding!

SXR spectrometer, 800 eV (resolution limited)

SLAC

First seeding!

SXR spectrometer, 800 eV (resolution limited)

SLAC

Seeding with 2nd order diffraction

SLAC

Seeding with 2nd order diffraction

SLAC

Seeding with 2nd order diffraction

Why isn't everything perfect?

It's all the accelerator's fault:

- a) Fundamental SASE jitter
- b) Electron energy jitter
- c) Electron orbit jitter
- d) Nonlinear phase space of electron bunch
- e) Jitter of electron bunch phase space

Electron Phase Space

SLAC

Electron Phase Space

SLAC

Electron Phase Space

SLAC

Electron Phase Space

SLAC

Electron Phase Space

Electron Phase Space

Seeded wavelength stability

Wavelength is stable to around 10⁻⁴

...but still widens average bandwidth by ~15%

Chirp changes shot-to-shot

Wavelength is stable to around 10⁻⁴

...but still widens average bandwidth by ~15%

Chirp changes shot-to-shot

Wavelength is stable to around 10⁻⁴

...but still widens average bandwidth by ~15%

Chirp changes shot-to-shot

Electron orbit changes shot-to-shot

Wavelength is stable to around 10⁻⁴

...but still widens average bandwidth by ~15%

Chirp changes shot-to-shot

Electron orbit changes shot-to-shot

Need robust, available X-ray diagnostics: → Transmissive SXR Spectrometer

SLAO

49

Latest Seeding Results

50

Latest Seeding Results

51

Latest Seeding Results

52

Latest Seeding Results

Electron energy jitter limits seeding performance

-SLAC

Avoiding Hutch Mono

Avoiding Hutch Mono

Avoiding Hutch Mono

Hutch monochoromator loses factor of 10 or more in brightness

Avoid mono and brightness increases factor of >50!

Undulators 10-25 inserted

Gain length ~ 2m

Seeded gain length (930 eV)

Gain length ~ 2m

Accomplished Goals:

- 1. Achieved self-seeding at soft X-rays
- 2. Demonstrated seeding across 500-1000 eV range
- 3. Observe up to factor of ~5-50 increase in average brightness
- 4. Reach up to ~5000 resolving power
- 5. Wavelength stability of 10⁻⁴

Accomplished Goals:

- 1. Achieved self-seeding at soft X-rays
- 2. Demonstrated seeding across 500-1000 eV range
- 3. Observe up to factor of ~5-50 increase in average brightness
- 4. Reach up to ~5000 resolving power
- 5. Wavelength stability of 10⁻⁴

Still to do:

- 1. Study optimal seeding conditions (vs. seed power, slit size, etc.)
- 2. Optimize taper to maximize seeding vs. SASE
- 3. Improve setup to reduce time, improve stability, and attract users

Reducing setup time

Target: Less than 30 minutes to switch from SASE to seed

Low level GUIs to organize components

High level programs to guide operators

On behalf of SXRSS team:

Thanks to the enormous group of people who made this project possible!