Author: Huang, Y.-C.
Paper Title Page
MOP086 Broadly Tunable THz FEL Amplifier 252
  • C.H. Chen, F.H. Chao, Y.C. Chiu, Y.K. Gan, K.Y. Huang, Y.-C. Huang, Y.C. Wang
    NTHU, Hsinchu, Taiwan
  Funding: MOST 102-2112-M-007 -002 -MY3, Taiwan
In this paper we present a broadly tunable sub-MW THz FEL amplifier driven by a photoinjector with a sub-kW seed THz source tunable between 0.7-2.0 THz. Specifically an S-band photoinjector at 2.856 GHz generate a 3.3-5.5 MeV electron bunch with 0.5 nC charge in a 4.25 ps rms bunch length, which is injected into a 2-m long undulator with a period of 18 mm and an rms undulator parameter of 0.98. The driver laser of the photoinjector is a frequency quadrupled amplified, mode-locked Nd:YVO4 laser at 1064 nm. We recycle the unconverted infrared laser at 1064 nm to pump a THz parametric amplifier using a lithium niobate crystal as its gain crystal. This THz parametric amplifier generates a transform-limited THz pulse with sub-kW power between 0.7 and 2.0 THz, which is seeded into the undulator to produce broadly tunable, transform-limited, sub-MW THz radiation through FEL amplification with a gain of about 3000. Since the pump laser of the THz OPA is derived from the driver laser of the photoinjector, the seed THz pulse is fully synchronized and overlapped with the electron bunch. Experimental progress of this work will be presented in the conference.
*Work supported by MoST under NSC 102-2112-M-007-002-MY3
poster icon Poster MOP086 [1.269 MB]  
TUP047 Chirped Pulse Superradiant Free-electron Laser 489
  • Y.-C. Huang, C.H. Chen
    NTHU, Hsinchu, Taiwan
  • J. Wu, Z. Zhang
    SLAC, Menlo Park, California, USA
  Funding: This work is supported by Ministry of Science and Technology under Contract NSC 102-2112-M-007-002-MY3
When a short electron bunch traverses an undulator and radiates a wavelength significantly longer than the bunch length, the electrons quickly loses energy through so-called superradiance and generate a negatively chirped radiation frequency at the output. In this paper, we develop a theory to describe this chirped-pulse radiation and numerically demonstrate pulse compression by using a quadratic phase filter. As a design example at THz, a photoinjector/linac system generates a 15 MeV electron bunch containing 15-pC charge in a 60-fs duration. The electrons radiate a chirped pulse at 2.5 THz from a 1.5 m long undulator with a period of 5.6 cm and undulator parameter of 1.7. By using a grating pair, the output THz field can be compressed from 27 to 3 cycles. As another example at EUV, a future dielectric laser accelerator [1] is assumed to generate a 100 MeV electron bunch containing 75-fC charge in 1-nm long length. The electrons radiate a chirped EUV pulse at 13.5 nm from a 15.8 cm long dielectric laser undulator [2] with a period of 1.05 mm and undulator field of 3.3 T. By using a quadratic phase filter as a pulse compressor, the peak power of the EUV radiation is increased from 0.7 to 10 kW.
*Y.C. Huang and R.L. Byer, Appl. Phys. Lett. 69 (15), (1996) 2185-2177.
**T. Plettner, R. L. Byer., Phys. Rev. ST Accel. Beams 11, (2008) 030704.