Author: Carlsten, B.E.
Paper Title Page
MOOCNO04 Using a Lienard-Wiechert Solver to Study Coherent Synchrotron Radiation Effects 17
 
  • R.D. Ryne
    LBNL, Berkeley, California, USA
  • B.E. Carlsten, N.A. Yampolsky
    LANL, Los Alamos, New Mexico, USA
 
  We report on coherent synchrotron radiation (CSR) modeling using a new first-principles Lienard-Wiechert solver (CSR3D) that simulates real-world number of particles (624 million to 6.24 billion for 100-pC to 1-nC bunch charges). Using this tool, we have verified the limits of applicability of the common 1-D CSR model, including effect due to transverse beam size and shape. We also have observed energy dependent, wavelength dependent, and transverse-size dependent effects on CSR enhancement from microbunching. Additionally, we describe statistics of CSR shot noise, including dependencies on beam energy and transverse position and resulting energy diffusion. We consider the full transverse equation of motion and also quantify the effect of emittance growth from the bunch’s transverse radiation force.  
slides icon Slides MOOCNO04 [6.258 MB]  
 
MOPSO27 Study of CSR Effects in the Jefferson Laboratory FEL Driver 58
 
  • C.C. Hall, S. Biedron, T.A. Burleson, S.V. Milton, A.L. Morin
    CSU, Fort Collins, Colorado, USA
  • S.V. Benson, D. Douglas, P.E. Evtushenko, F.E. Hannon, R. Li, C. Tennant, S. Zhang
    JLAB, Newport News, Virginia, USA
  • B.E. Carlsten, J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the Office of Naval Research and the High Energy Laser Joint Technology. Jefferson Laboratory work also received supported under U.S. DOE Contract No. DE-AC05-06OR23177.
In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.
 
 
WEPSO19 A Full Beam 1D Simulation Code for Modeling Hybrid HGHG/EEHG Seeding Schemes for Evaluating the Dependence of Bunching Factor Bandwidth on Multiple Parameters 533
 
  • C.M. Fortgang, B.E. Carlsten, Q.R. Marksteiner, N.A. Yampolsky
    LANL, Los Alamos, New Mexico, USA
 
  Multiple seeding schemes are available for design of narrow-band, short-wavelength FELs. Analysis of such schemes often focus on the amplitude of the final bunching factor b, and how far it is above shot noise. Only under ideal conditions is the bandwidth of b FT limited. We have developed a 1D simulation tool that models complex hybrid seeding schemes using macro properties of the entire beam bunch to assess effects on both the amplitude and bandwidth of b. In particular the effects on bunching factor from using non-ideal beam driven radiators for downstream modulators, energy slew and curvature, and energy spread are investigated with the 1D tool.