Massively Parallel Simulation of Radiation Phenomena using a Lienard-Wiechert Approach

Robert D. Ryne

Center for Beam Physics Lawrence Berkeley National Laboratory Bruce Carlsten, Nikolai Yampolsky, LANL Chad Mitchell, Ji Qiang, LBNL

Outline

- Motivation
- Brief code overview
- Applications
- Conclusions

Why develop a massively parallel Lienard-Wiechert code?

- A tool of discovery
 - explore radiative phenomena
 - test novel concepts
- A benchmarking tool

Dipole CSR (O. Ruebel and R. Ryne, LBNL)

- explore limits of simplified models and validity of new algorithms
- An enabling tool
 - simulate things that existing codes cannot
- A design tool
 - optimize beamlines for next-generation accelerators

L-W codes have been developed before. What's new?

- Massive parallelism enables
 - -real-world # of particles
 - shot noise effects
 - -3D effects
 - -very high resolution
 - microns to sub-nanoscale

Massive Parallelism + Advanced Algorithms transformative tool for multi-physics modeling including radiation

Overview of the parallel L-W solver

- Given N particles whose coordinates $\zeta_j = (x, \gamma \beta_x, y, \gamma \beta_y, z, \gamma \beta_z)$ are known at a number of previous times, t_k
- Find the EM fields produced by the particles at time t

$$E = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{\gamma^2 \kappa^3 R^2} (n - \beta) + \frac{q}{\kappa^3 Rc} n \times \left((n - \beta) \times \frac{\partial \beta}{\partial t} \right) \right] \qquad \beta = \mathbf{v}/c$$

$$n = \mathbf{R}/|\mathbf{R}|$$

$$B = \frac{1}{c} n \times E$$

$$[...] \text{ denotes quantities evaluated at the retarded time } (x - x_r)^2 + (y - y_r)^2 + (z - z_r)^2 = c^2 (t - t_r)^2$$

$$R \text{ points from the radiating particle's position at the retarded time it the observation time.}$$

L-W solver: Key numerical/computational ingredients

- For each observation point, retarded quantities of every particle are found through bisection, tracking & iteration
 - Parallel implementation to handle $O(10^9)$ particles & their history
 - Robust numerical integrator w/ adaptive step size 🏽 (dop853, E. Hairer, G. Wanner)
 - Brent's method
 - Occasional double-double precision (D. Bailey)
- Strictly particle-based approach:
- Convolution-based method:
 - Parallel FFT (S. Plimpton)
 - Domain decomposition
 - serial FFT

Status of the 3D Lienard-Wiechert Code (CSR3D)

- Run on Hopper, Edison (NERSC), Mustang (LANL), Mira (ANL)
- Compared w/ theory & codes
- Initial focus on dipole CSR
- Now able to model general beamlines, e.g undulators
- Starting to add dynamics

Undulator radiation from a modulated Gaussian bunch

Selected Applications

- Steady-state CSR in dipoles
 - Shot noise
 - Microbunching enhancement
 - 3D effects
 - Dynamics: Energy diffusion
- Undulator radiation
 - single-particle wake
 - multi-particle simulation results

CSR shot noise in dipoles (ρ =1 m) 0.1–1 nC @ 1GeV : Large physical fluctuations

We discovered that CSR dipole <u>fluctuations are position-dependent</u>

CSR enhancement in bunches with a microbunched modulation

3D effects: sensitivity to vertical bunch size

Ez,rad(V/m)

First ever calculation of convective derivative term; can produce significant emittance growth comparable to that from CSR

Influence of shot noise on energy diffusion

Etheta(V/m)

Energy diffusion, cont.

Example: Radiation in a Planar Undulator

- $B=B_0 sin(k_{wig} z)$
- $\lambda_{wig} = 3 \text{ cm}$
- Two cases:

− E=125 MeV, B₀ = 0.025 T \rightarrow K_{und}=0.07, λ_{rad}=0.25µm

− E=14 GeV, B₀ = 1.4 T → K_{und}=3.64, λ_{rad} =0.15nm

Transverse single-particle radiation wake (K=0.07): Ex,rad tabulated on the z-axis

Ex,rad for undulator, 125 MeV, K=0.07, B=0.025 T

Longitudinal single-particle radiation wake (K=0.07): Ez,rad tabulated on the z-axis

Ez,rad for undulator, 125 MeV, K=0.07, B=0.025 T 0.01 0 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 Ez,rad for undulator, 125 MeV, K=0.07, B=0.025 T -0.08 2.0e-05 2e-07 4e-07 6e-07 8e-07 1e-06 0 0.0e+00 z(m) -2.0e-05 Ez,rad(V/m) -4.0e-05 -6.0e-05 -8.0e-05 -1.0e-04 -1.2e-04 1.0e-06 1.2e-06 1.4e-06 1.6e-06 1.8e-06 2.0e-06

Ez,rad(V/m)

Transverse single-particle radiation wake (K=3.64): Ex,rad tabulated on the z-axis

Ex,rad single-particle undulator wake, 14 GeV, K=3.64, B=1.4 T

Robert D Ryne, FEL 2013

Ex,rad(V/m)

Longitudinal single-particle radiation wake (K=3.64): Ez,rad tabulated on the z-axis

Ez,rad(V/m)

Longitudinal single-particle radiation wake (K=3.64): Longitudinal Poynting vector in y-z plane

10x10x10 μ m Gaussian bunch, E=125 MeV, K=.07: No obvious FEL radiation ahead of the bunch

But there is small amplitude microstructure due to sampling with a small # of particles (24 million)

10x10x10 μ m modulated Gaussian (λ_{mod} =0.24 μ m): Now there *is* FEL radiation evident ahead of the bunch

Lienard-Wiechert Particle-Mesh (LWPM)

- These calculations are slow. How to speed up?
- Adapt techniques from parallel "space-charge" codes:
 - We don't normally compute the field at a point exactly by summing from all particles
 - Instead of summing N single-particle Green functions, we use ONE Green function, then convolve with ρ on a grid
 - This approximation usually is valid, but not always
 - When it doesn't there is usually a work-around, e.g. when ΔE is large, we do energy binning
- 3D L-W convolution-based approach:
 - Calculate G_{LW} on a 3D grid for 1 particle
 - Zero pad the charge density
 - Use parallel FFT to convolve, scales as M logM

Can we use convolution methods in a L-W code? Yes. Here are 2 examples

Convolution-Based L-W solver example #2: Undulator radiation from a modulated bunch

Parallel light source simulation: Status and future prospects

- This year: S2E IMPACT-Z + IMPACT-T + GENESIS run on Hopper@NERSC: 2B particles, 2000 cores, 10 hours (MOPSO66 by J. Qiang et al.)
- Parallel multi-physics light source modeling w/ 3D space-charge, 1D CSR, and wakes is maturing
- 10x performance in computing power is becoming more ubiquitous, soon "routine" simulations will use ~10K cores, "big" will use > 1M cores
- Ultra-high resolution modeling, and 3D CSR selfconsistent modeling are around the corner

New tools for modeling 3D radiative phenomena – using advanced algorithms on supercomputers – will transform our ability to design, explore, understand, and advance future light sources and new accelerator concepts Robert D Ryne, FEL 2013

Acknowledgements

- Primary support provided by – NNSA: LANL LDRD program
- Collaboration w/ researchers supported by
 - DOE/SC: BES ADR program
 - DOE/SC: ASCR : VACET, ExaHDF5
- Gennady Stupakov
 - energy diffusion, two-particle model
- Computational resources provided by
 - NERSC, LANL Inst Computing, ANL/ALCF Director's reserve

