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Abstract

We report on coherent synchrotron radiation (CSR)
modeling using a massively parallel, first-principles 3D
Lienard-Wiechert solver. The solver is able to perform sim-
ulations with hundreds of millions to billions of simulation
particles, the same as the real-world number of electrons
per bunch typically present in modern accelerators. We
have recently extended this tool to model a variety of beam
transport systems including undulators. In this paper we
provide an overview of the tool and present several exam-
ples. We also describe the concept of a Lienard-Wiechert
particle-mesh (LWPM) code, and how such a code might
make it possible to perform parallel, self-consistent model-
ing using a Lienard-Wiechert approach.

INTRODUCTION

Particle accelerators are among the versatile and impor-
tant tools of scientific discovery and technology advance-
ment. They are responsible for a wealth of advances in ma-
terials science, chemistry, bioscience, high-energy physics,
and nuclear physics. They also have important applications
to the environment, energy, national security, and medicine.
Given the enormous benefit of particle accelerators and
their extreme complexity, high performance computing us-
ing parallel computers has become an essential tool for
their design and optimization to reduce cost and risk, max-
imize performance, and explore advanced concepts.

Early examples of parallel simulation in the U.S. ac-
celerator community date from the late 1980’s and early
1990’s [1]. By the mid-1990’s parallel beam dynamics
codes had been developed to run on the Thinking Ma-
chines CM-5 computer at LANL’s Advanced Computing
Laboratory [2, 3]. In 1997 the U.S. Department of Energy
(DOE) approved a “Grand Challenge” project in Compu-
tational Accelerator Physics [4]. This later evolved into a
DOE Scientific Discovery through Advanced Computing
(SciDAC) project [5, 6]. This, as well as other R&D ef-
forts in parallel accelerator simulation worldwide, led to
the parallelization of existing beam dynamics codes and
the development of new codes. Examples include ASTRA
[7], BeamBeam3D [8], CSRtrack [9], elegant/SDDS [10],
GENESIS [11], G4Beamline [12], ICOOL [13], IMPACT
[14, 15], MaryLie/IMPACT [16], OPAL [17], SPUR [18],
Synergia [19], TRACK [20],TREDI [21], and WARP [22],
to name a few.

From the mid-1990’s to the present, significant attention
was devoted to parallel 3D space-charge modeling, multi-
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physics modeling, and increasingly large-scale simulation.
In regard to 3D space-charge modeling, many parallel Pois-
son solvers were developed to treat a variety of boundary
conditions, e.g., [23, 24, 25]. Integrated Green functions
(IGFs) were introduced to increase solver performance and
address grid aspect ratio issues [26, 27, 28], and are now
used in several codes worldwide [7, 8, 14, 16, 17]. IGFs
have also been applied to model 1D CSR [29, 30]. In regard
to multi-physics modeling, split-operator methods were in-
troduced as a means to combine high-order optics effects
with parallel 3D space-charge and other effects [31], and
are used in several codes [14, 16, 17, 19]. In general, paral-
lel beam dynamics codes now contain, and are routinely
used to model, a variety of phenomena including high-
order optics, space-charge effects, wakefield effects, 1-D
CSR effects, electron-cloud effects, and beam-material in-
teractions. Regarding the trend toward increasingly large-
scale simulation, a start-to-end 2-billion-particle simula-
tion of a future light source, based on the single parallel
executable containing IMPACT-T, IMPACT-Z, and GENE-
SIS, requires 10 hours on 2048 cores [32].

Despite these major advances in parallel multi-physics
modeling, the simulation of 3D CSR effects has remained
a major challenge. A first-principles classical treatment
usually involves the Lienard-Wiechert (L-W) formalism.
Since this involves quantities when the radiation was emit-
ted (i.e. at retarded times and locations), it requires storing
a history of each particle’s trajectory. Also, CSR phenom-
ena can exhibit large fluctuations which are physical, not
numerical, hence it is often necessary to use a large number
of simulation particles if those fluctuations are to be mod-
eled correctly. Storing a large number of particles over a
lengthy time history imposes a huge memory requirement.
Furthermore the calculation of retarded quantities is itera-
tive and extremely time consuming. Consider that the cal-
culation of an electric field component on a grid in an elec-
trostatic code, e.g., z/|r|3, requires only a small number
of floating point operations at each grid point; by contrast
the calculation of the L-W field at just a single grid point
requires a small simulation code itself to implement the it-
eration to find the retarded quantities, and furthermore the
iteration involves numerical integration of trajectories. In
summary a L-W solver involves large memory and many
floating point operations, and obviously requires parallel
computing. In addition, to embed such a capability in a
self-consistent beam dynamics code would greatly com-
pound the computational requirements.

Despite these computational challenges, in the following
we will present results that point to the possibility of a mas-
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sively parallel L-W-based beam dynamics code. First, we
will provide an overview of our parallel L-W solver. Next
we will provide some example applications to illustrate the
usefulness of this approach. Lastly, we will provide an out-
line of how standard particle-mesh (PM) techniques used in
parallel electrostatic or quasi-electrostatic particle-in-cell
codes can be modified to produce a self-consistent Lienard-
Wiechert particle-mesh (LWPM) code.

LIENARD-WIECHERT SOLVER
We begin with the Lienard-Wiechert fields in free space:

L (0 X{(ﬁ_g)ng}]

A x E ¢y

E =

B =

where square brackets denote that the quantity inside is to
be evaluated at the retarded time. In the above, B denotes
a particle’s velocity vector divided by the speed of light,
R is a vector pointing from a radiating particle’s position
at the retarded time to the observation point at time ¢, 7
is the unit vector & = R/|R|, and k = 1 — 7 - 3. For
a given observation point (x,y, z) and observation time ¢,
the retarded quantities satisfy,

(x—2,.)2+ -y +(z—2)2 =t —1,)2 =0, (2)

where (., y,, z,) denotes a particle’s position at the re-
tarded time ¢,.. Note that other boundary conditions can be
treated if the underlying Green function is known. For ex-
ample, conducting plate boundary conditions can be treated
using the fields associated with Eq. 4.2 of [33].

In a previous note we reported on calculations based on
an electron bunch in a uniform magnetic field [34]. Here
we describe a methodology to treat arbitrary beamlines.
Suppose each particle’s evolution is described by a six-
vector ¢ as a function of some independent variable, 7.
Suppose also that each particle’s history has been stored
at a number of locations, i.e., suppose that for each particle
we know a sequence, ( k. for k values of the independent
variable 7.

In our Lienard-Wiechert solver, for a given observation
point, we loop over particles and for each particle we first
find adjacent quantities %, k+1 that bracket ¢,.. This is done
using a bisection search to locate a change of sign in Eq. (2)
at the stored values. We then use Brent’s method (routine
zbrent from [35]) to iteratively find the root of Eq. (2).
We have found this approach to be more robust to round-
off than a simple Newton search. During the iteration we
need to perform numerical integration of the equations of
motion between two stored history values. For this purpose
we use a Dormand-Prince 8-5-3 algorithm with automatic
step size adjustment [36]. After the iteration has converged
to the retarded quantities we evaluate Eq. (1) to obtain the
L-W fields due to each particle. In the following ¢, is cal-
culated to a relative accuracy of 10~1%. For some problems
we have found it useful to use extended precision to ensure
that roundoff is not noticeable. For this purpose we use
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DDFUN90 package for double-double arithmetic [37]. Our
solver is an MPI code that uses particle decomposition. As-
suming the observation points are replicated on the proces-
sors, the total L-W fields are found by an MPI reduction
that adds the contributions from all MPI processes. Later
we will discuss an alternative approach that uses domain
decomposition.

APPLICATIONS

As mentioned previously, in [34] we focused on steady-
state CSR in dipoles. We used a L-W solver to explore
limits of the 1D model, the strength of fluctuations due
to shot noise, and the enhancement of dipole CSR when
a bunch has a microbunched structure. In the following we
will present new examples involving dipole CSR, and ex-
amples involving undulator radiation. Except where noted,
the field plots that follow present just the L-W radiation
component. Also, the retarded quantities are computed by
integrating trajectories through just the external fields, not
including the self-fields.

CSR in Dipoles

Figure 1 shows the results from 6 simulations, each
with 6.24 billion particles (corresponding to 1 nC), of
a zero emittance, 1 GeV bunch in a dipole with p =
1 m. Starting from a 1x1x10 micron Gaussian bunch,
we multiplied the longitudinal distribution by a function
a + bsin(27z/Aod), Where Ayoq denotes a modulation
wavelength, and with a and b chosen so that the amplitude
varied from 0.1 to 1. We randomly sampled the distribution
using a rejection method. Figure 1 shows the longitudinal
radiation electric field, F rqq for Aoq =5, 10, 50, 100,
500 nm. The curve labeled DC has no modulation, i.e., the
longitudinal profile is a Gaussian. Since no adequate theory
can predict the wavelength dependence of CSR enhance-
ment, except in some regimes, large-scale L-W simulation
provides a useful means to explore this phenomenon.

Ez,rad vz microbunching wavelength for 1x1x10 micron 1GeV, 1nC bunch
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Figure 1: Longitudinal radiation electric field, F, ;.,q for
a 1 GeV bunch with an imposed longitudinal density mod-
ulation, simulated with 6.24 billion electrons, for different
values of the modulation wavelength.
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In [34] we also showed that the 1D model of CSR was
remarkably robust, that only when a Gaussian bunch be-
comes extremely flattened (“plate-like”) does the 1D model
break down. However, it is worth pointing out that there
are 3D effects that cannot be captured by the 1D model.
An example is shown in Fig. 2. In this figure, the bunch
is microbunched at \,,,q = 100 nm. The bunch rms di-
mensions in x-y-z (without microbunching) are shown for
4 cases: 10x10x10 micron, 10x1x10 micron, 1x10x10 mi-
cron, and 1x1x10 micron. As is clear from the figure,
the microbunching enhancement is sensitive to the verti-
cal bunch size but not to the horizontal bunch size. Such
studies could not be carried out with a 1D CSR model.
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Figure 2: Microbunching field enhancement for different
transverse bunch sizes. The microbunching enhancement
is seen to be sensitive to the vertical bunch size but not to
the horizontal bunch size.

Before leaving the topic of dipole CSR we will present
one more example. Consider the evolution of a test parti-
cle moving in the CSR field. Figure 3 shows the tangential
electric field that would be experienced by a test particle
at the center of a 1 GeV, 624M electron, 10x10x10 micron
Gaussian bunch as it travels through 3 degrees of transport
in a magnet with p = 1 m. As can be seen in the inset, the
shot noise fluctuations are very well resolved. Using this
data we computed its autocorrelation function and exam-
ined its dependence on energy. Figure 4 shows the energy
change as a function of propagation distance in the dipole
that would be experienced by a test particle at the center
of the bunch. The bunch is a zero emittance, 1 GeV, InC
Gaussian with rms sizes 0, = 0y = 0, = 10 micron. The
4 curves correspond to 4 different realizations of the distri-
bution, each modeled with 6.24 billion particles. The time
histories corresponding to different realizations of the shot
noise seem independent from each other and can be rea-
sonably approximated by a random walk model. The red
dashed lines show the boundaries that the energy change
should satisfy if the process is diffusive. The diffusion co-
efficient was calculated based on the autocorrelation func-
tion of the energy time history.
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Figure 3: Tangential electric field at the center of a 1 GeV,
624M electron, 10x10x10 micron Gaussian bunch as it
travels through 3 degrees of transport in a magnet with
p = 1 m. The narrow blue rectangle shows the domain
of the inset, indicating that the fluctuations are very well
resolved.
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Figure 4: Energy change of a particle at the bunch center
vs. propagation distance in a dipole, computed using the
tangential electric field produced by the L-W solver. The
4 curves correspond to 4 different realizations of the distri-
bution, each modeled with 6.24 billion particles. The red
dashed lines show the boundaries that the energy change
should satisfy if the process satisfies a diffusion equation.

Undulator Radiation

The following results are based on an undulator field that
is given by,
By = Bysin(kyz), 3)

where By is the peak magnetic field in the y-direction,
and where k,, = 27/, is the undulator wave number.
The particles travel along the z-direction and wiggle in the
x — z plane. This undulator model has no entrance or exit
fields. However, since our simulation finds retarded quan-
tities though high-order numerical integration [36], and not
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by simple analytic approximations of trajectories in the un-
dulator, this approach could equally well be applied to any
undulator model whose fields are known analytically or are
accessible by some numerical procedure.

Before presenting multi-particle simulation results, first
consider the single-particle wakefields. Figure 5 shows
the radiation component of E, for a 125 MeV electron
in an undulator with By = .025 T and A\, = 3 cm.
For these parameters the undulator K-value is 0.07. Note
that the wavelength of the oscillation in Fig. 5 is approx-
imately 0.25 micron, consistent with the expected value
Au/(29%)(1 + K?/2) = 0.249 micron. Figure 6 shows
the same quantities for a 14 GeV electron in an undulator
with By = 1.3 T and k,, = 3 cm. For these parameters the
undulator K-value is comparable to LCLS, K = 3.64. As
seen in Fig. 6, the oscillation wavelength is approximately
1.53 Angstrom, consistent with the expected value 1.525
Angstrom. The wake for this case contains a lot of high
harmonics unlike the previous case with K<1. The peak
at the origin has a value 1.9¢10 V/m, while the peak is only
263 V/m in the preceding figure. In both these figures it
is understood that the fields are plotted at £ = 0 when the
electron is at = y = z = 0 (and dx/dt chosen to pro-
duce a periodic orbit). The time-dependent wakefield is of
course oscillatory with a frequency equal to the electron
travel time over an undulator period.

Returning to the 125 MeV case, next consider a Gaussian
bunch of electrons with rms sizes 0, = o, = 0, = 10 um
propagating along the undulator. The simulations that fol-
low used only 24 million electrons. Figure 7 shows the
radiation component of E, produced by this bunch. It is
interesting to note that the shot noise fluctuations are small,
much smaller than those presented in [34] for the steady-
state dipole CSR case. This is understood to be due to
the fact that all the particles in the undulator radiate in-
side a cone that is smaller than the wiggle amplitude, in
contrast to the dipole case for which the particles radiate
along an extended path whose opening angle is much larger
than the radiation cone angle. Though the fluctuations are
small, they are still present, as seen in Fig. 8 which shows
a zoomed-in view. Another observation in Fig. 7 is that the
radiation pattern follows the bunch profile, i.e., there is no
radiation produced ahead the bunch itself. Next, suppose
that the Gaussian bunch is microbunched at a modulation
wavelength A4 = 0.249 micron. Figure 9 shows the sim-
ulation results. Now it is clear that there is a strong radia-
tion field ahead of the bunch. The oscillation is evident in
the inset of the figure.

CONVOLUTION-BASED SOLVER

The preceding results were all based on computing the
exact L-W fields at an observation point by summing the
contributions from N particles. In an N-body code this
would scale as N2 which is huge considering that N is of
order 10°. Now we will consider an alternative method to
computing the L-W fields from a distribution of particles.
Instead of summing /N Green functions at a point (i.e. the
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Ex,rad for undulator, 125 MeV, K=0.07, B=0.025 T
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Figure 5: x-component of the single-particle radiation elec-
tric field, E; ,.qq4, for a 125 MeV electron inside an undu-
lator with By = 0.025 T" and A,, = 3 cm, corresponding
to an undulator K value of 0.07 .

Ex,rad single-particle undulator wake, 14 GeV, K=3.64, B=1.4 T
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Figure 6: x-component of the single-particle radiation elec-
tric field, E; ,qq4, for a 14 GeV electron inside an undulator
with By = 1.3 T and \,, = 3 ¢m, corresponding to an un-
dulator K value of 3.64 .

L-W fields of N point-particles), we use just one Green
function, and convolve it with the charge density at the ob-
servation time. This method has the advantage that just one
Green function needs to be calculated (rather than of order
10%). Furthermore, by zero-passing the charge density (see,
e.g., the appendix in [38]), the convolution can be perform-
ing using an FFT-based method, which scales as M log M,
where M is the number of grid points. Also, the FFT can
be performed using a parallel FFT routine. This approach
is analogous to the method in widely used electrostatic or
quasi-electrostatic PIC codes: in that approach, a Lorentz-
transformation is used to transform to the bunch frame, the
electrostatic fields are computed based on a single Green
function, and the fields are transformed back to the lab-
oratory frame. Such an approach is not always valid, as
with some photoinjector simulations where the bunch en-
ergy spread is so large that there is no frame of reference
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Figure 7: x-component of the radiation electric field,
E rad, inside an undulator with By = 0.025 7" and A\, =
3 c¢m, produced by a zero emittance, 125 MeV Gaussian
bunch with rms sizes 0, = oy = 0, = 10 um. Also
shown (in green) is the longitudinal bunch profile which is
a Gaussian with rms size 10 micron. Notice that the radi-
ation field does not extend beyond the front of the bunch,
but simply follows the bunch profile.
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Figure 8: A zoomed-in view of F;, ,,q from Fig. 7. Notice
the small-amplitude microstructure, which is due sampling
the distribution at random with 24 million particles.

where longitudinal motion of all particles is nonrelativis-
tic. In that case additional techniques (such as energy bin-
ning) are used to address this problem in quasi-electrostatic
codes. Similar measures are likely to be found for L-W
codes. In this report we do not address the domain of valid-
ity of the convolution-based L-W method. Instead we will
just provide two examples that illustrate it’s applicability.
Our convolution-based code makes use of the same
subroutines for computing L-W fields as in our above-
mentioned solver, but they are called only once. Also,
the code uses domain decomposition, so each MPI process
owns only a portion of the computational grid. The grid
quantities are computed on a zero-padded domain that is
twice the size of the physical domain in each dimension.
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Figure 9: The same as Fig. 7, except that the Gaussian
bunch is microbunched at a wavelength of 0.249 micron.
Now the radiation field does extend beyond the front of the
bunch. The narrow blue rectangle shows the domain of the
inset.

After the L-W Green function is computed on the grid, a
parallel FFT is used to convolve it with the charge density
whose values have also been computed on a doubled grid.
We use a parallel FFT package [39], which includes sub-
routines that we also use for domain decomposition. The
underlying 1D FFTs are performed with FFTW [40]. A
useful feature of [39] is that it allows for several types of
decomposition: xXyz, Xy, Yz, Xz, X, Y, Z.

We tested our convolution-based L-W solver on two
problems. Figure 10 shows the on-axis z-component of the
radiation field produced by a 1x1x10 micron Gaussian ball
in a dipole magnet with p = 1 m. The plot shows convo-
lution results using 64x64x2048 grid and a 128x128x4096
grid. Also shown is the result from L-W summation over
6.24 billion particles. The convolution method is in good
agreement with the L-W sum. Figure 11 shows the x-
component of the radiation field produced by a 125 MeV
modulated Gaussian bunch in an undulator. The bunch
is a 10 x 10 x 10 micron rms modulated Gaussian with
Amod = 0.249 micron. The undulator field is given by
Eq. 3 with By = 0.025 T and A\, = 3 cm. The plot shows
convolution results using a 64x64x32768 grid, along with
results from L-W summation. The convolution-based re-
sults and the L-W summation are in excellent agreement.

DISCUSSION AND CONCLUSIONS

In this paper we have described the status of our mas-
sively parallel L-W solver. We presented several examples
illustrating how such a code can be used to investigate phe-
nomena that would be difficult or impossible to examine in
other codes, such as shot-noise effects in a real-world dis-
tribution of particles, and 3D effects. We also described a
convolution-based L-W approach and compared it with the
L-W summation approach in two test problems. It should
be noted that those comparisons made use of the “ordi-
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Figure 10: z-component of the radiation electric field,

E. rad, for a 1 GeV Gaussian bunch inside a dipole with
p = 1 m. Comparison of Lienard-Wiechert summation
over 6.24 billion particles, and convolution-based methods
using a 64 x 64 x 2048 grid and a 128 x 128 x 4096 grid.
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Figure 11: x-component of the radiation electric field,
By rad, for a 125 MeV modulated Gaussian inside an un-
dulator with By = 0.025 7" and A\, = 3 ¢m,. Comparison
of Lienard-Wiechert summation over 960k particles, and
convolution-based methods using a 64 x 64 x 32768 grid.
The narrow blue rectangle shows the domain of the inset.

nary” L-W Green function, not the integrated Green func-
tion (IGF). Up to now IGF techniques have been applied
only to problems for which the underlying Green function
is known analytically [26, 27, 28, 29, 30, 41]. In the fu-
ture it might be possible to apply IGF techniques to L-W
problems through the use of numerical techniques such as
adaptive quadrature.

Using the convolution-based approach, a L-W solver
might be used to produce a self-consistent 3D code — a
L-W particle-mesh (LWPM) code. In fact, such a code
would not be just a code for modeling CSR effects, since
the solver could in principle be embedded in any parallel
beam dynamics code and be used to treat space-charge and
synchrotron radiation effects along with other physical phe-
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nomena. The underlying beam dynamics code would need
certain modifications, e.g. the ability to store particle his-
tories and the ability to provide absolute particle data (not
relative to a reference trajectory) “on the fly.”

The approach described is analogous to that used in elec-
trostatic and quasi-electrostatic PM codes. The primary
difference is that the Green function on a grid is very much
more time consuming to compute compared to the electro-
static case for which the Green function is just 1/r or its
gradient. Also, given the nature of CSR fields and FEL ra-
diation, the required grid resolution is much higher than
has been dealt with previously. Nevertheless, given the
progress in parallel computing resources, it is likely that
within 3 years all the major US supercomputer centers will
have systems with several hundred thousand cores. In such
an environment, “routine” simulations could be done with
10,000 cores, with medium and large-scale runs requiring
100,000 or more. In such an environment, where massive
parallelism increased performance by a factor of 10-100 ,
and where GPUs might be present that are able to increase
code performance by a few tens, it seems quite possible
that a parallel L-W particle-mesh code would be feasible.
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