Author: Baxevanis, P.
Paper Title Page
MOPSO04 Theoretical Analysis of a Laser Undulator-Based High Gain FEL 27
 
  • P. Baxevanis, R.D. Ruth
    SLAC, Menlo Park, California, USA
 
  The use of laser (or RF) undulators is nowadays considered attractive for FEL applications, particularly those that aim to utilize relatively low-energy electron beams. In the context of the standard theoretical analysis, the counter-propagating laser pulse is usually treated in the plane-wave approximation, neglecting amplitude and phase variation. In this paper, we develop a three-dimensional, analytical theory of a high-gain FEL based on a laser or RF undulator, taking into account the longitudinal variation of the undulator field amplitude, the laser Gouy phase and the effects of emittance and energy spread in the electron beam. Working in the framework of the Vlasov-Maxwell formalism, we derive a self-consistent equation for the radiation amplitude in the linear regime, which is then solved to good approximation by means of an orthogonal expansion technique [*]. Numerical results obtained from our analysis are used in the study of an example of a compact, laser undulator-based, X-ray FEL.
*P. Baxevanis, R. Ruth, Z. Huang, Phys. Rev. ST-AB 16, 010705 (2013).
 
 
WEOCNO03 3-D Theory of a High Gain Free-Electron Laser Based on a Transverse Gradient Undulator 481
 
  • P. Baxevanis, Y. Ding, Z. Huang, R.D. Ruth
    SLAC, Menlo Park, California, USA
 
  The performance of a free-electron laser (FEL) depends significantly on the various parameters of the driving electron beam. In particular, a large energy spread in the beam results in a great reduction of the FEL gain, an effect which is relevant when one considers FELs driven by plasma accelerators or storage rings. For such cases, one possible solution is to use a transverse gradient undulator (TGU) [*,**]. In this concept, the energy spread problem is mitigated by properly dispersing the e-beam and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent theoretical analysis of a TGU-based high gain FEL, taking into account three-dimensional (3-D) effects and beam size variations along the undulator [***]. The results of our theory compare favorably with simulation and are used in fast optimization studies of various X-ray FEL configurations.
*T. Smith et al., J. Appl. Phys. 50, 4580 (1979).
**Z. Huang, Y. Ding, C. Schroeder, Phys. Rev. Lett. 109, 204801 (2012).
***P. Baxevanis, R. Ruth, Z. Huang, Phys. Rev. ST-AB 16, 010705 (2013).
 
slides icon Slides WEOCNO03 [3.217 MB]