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Abstract

The use of laser (or RF) undulators is nowadays con-
sidered attractive for FEL applications, particularly those
that aim to utilize relatively low-energy electron beams. In
the context of the standard theoretical analysis, the counter-
propagating laser pulse is usually treated in the plane-wave
approximation, neglecting amplitude and phase variation.
In this paper, we develop a three-dimensional, analytical
theory of a high-gain FEL based on a laser or RF undulator,
taking into account the longitudinal variation of the undula-
tor field amplitude, the laser Gouy phase and the effects of
emittance and energy spread in the electron beam. Working
in the framework of the Vlasov-Maxwell formalism, we de-
rive a self-consistent equation for the radiation amplitude in
the linear regime, which is then solved to good approxima-
tion by means of an orthogonal expansion technique. Nu-
merical results obtained from our analysis are used in the
study of an example of a compact, laser undulator-based,
X-ray FEL.

INTRODUCTION

In recent years, the free-electron laser (FEL) has
emerged as one of the leading methods for producing
bright, coherent radiation up to the X-ray region. The
push for higher photon energy is facilitated by the use of
higher electron energy and/or shorter undulator period. For
magnetic undulators, implementing the latter option is gen-
erally limited by technical considerations to periods of a
few mm at best. On the other hand, the wide availabil-
ity of lasers with very high peak power (in the TW level)
often raises the possibility of generating X-rays through
the head-on collision of an electron beam with a counter-
propagating laser pulse, where the field of the pulse acts as
an undulator with period equal to half the laser wavelength.
Though this process is usually studied in the framework of
incoherent, inverse Compton scattering sources, one can
also consider the production of coherent radiation from
an FEL that uses such a laser undulator, provided a high-
brightness electron beam is available [1]. Here, we present
a theoretical description of such a device, paying particular
attention to the effects introduced by variations in the am-
plitude and phase of the effective undulator field. A specific
numerical example for a soft X-ray, laser undulator-based
FEL is included in order to illustrate the main points of our
analysis and also to highlight some the main challenges in-
volved in the realization of this concept.

THEORY
FEL Configuration and Single Particle Motion

To begin with, let us assume that the laser radiation is
monochromatic, linearly polarized along the x direction
and has a Gaussian transverse profile. The electric field
of the laser pulse - which is propagating along the negative
z direction - can then be written as EL = EL(r, z)x̂, where

EL = −E0
w0

w
exp

(
− r2

w2

)
sin[kL(z+ ct) +

kLr
2

2R
− u] .

(1)
Here, r2 = x2 + y2, kL = 2π/λL (λL is the laser wave-
length), w = w(z) = w0(1 + z̄2/z2R)

1/2 is the laser spot
size, R = R(z) = z̄ + z2R/z̄ is the radius of curvature and
u = u(z) = tan−1(z̄/zR) is the Gouy phase. In these
relations, z̄ = z − zw, where z = zw is the position of
the laser waist, zR is the Rayleigh length, E0 is the field
amplitude at the waist and w0 = (2zR/kL)

1/2 is the min-
imum spot size. Moreover, the counter-propagating elec-
tron beam is also assumed to be round and Gaussian, with
transverse size σe(z) = (σ2 + σ′

2
z̄2)1/2, where σ and σ′

are the rms beam size and divergence at the location of the
electron beam waist, which we take to be the same as that
of the laser. Both the laser pulse and the electron beam
are characterized by a uniform longitudinal profile, with
temporal durations tL and te respectively (tL � te). For
simplicity, we can also assume that their front ends collide
at z = 0, when t = 0. Each electron in the beam interacts
with the laser field for a time t ≈ LI/c = tL/2, where
LI = ctL/2 is the corresponding interaction length. For
the configuration under consideration, we assume that the
interaction region is centered around the common waist,
so that LI = 2zw < zR. The laser power PL is given
by the relation PL = πcε0E

2
0w

2
0/4 - where ε0 is the vac-

uum permittivity - while the total energy in the laser pulse
is UL = PLtL.

Next, we consider the motion of electrons in the com-
bined field of the laser and the emitted FEL radiation. As is
the case with standard FEL schemes, the transverse motion
is predominantly determined by the undulator field. The
vertical magnetic field of the laser is BL ≈ −EL/c so the
total force in the x direction is Fx ≈ −e(EL − vzBL) ≈
−2eEL (the electric and magnetic force contributions are
equal and add up). This force gives rise to an oscillatory
motion similar to that in a conventional magnetic wiggler.
To establish this connection in a way that takes into ac-
count the dominant effects of the undulator field inhomo-
geneities, we consider the equation of motion in the hori-
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zontal direction, i.e. x′′ = d2x/dz2 ≈ Fx/γm0c
2 (γm0c

2

is the electron energy) or

x′′ ≈ 2eE0

γm0c2
w0

w
exp

(
− r2

w2

)
sin[kL(z+ct)+

kLr
2

2R
−u] .

(2)
To proceed, we first note that both the transverse depen-
dence of the laser amplitude and the quadratic phase∝ 1/R
can be neglected as long as σe � w, which we assume
to be true. The next step is to eliminate the time vari-
able t by introducing the ponderomotive electron phase
ψ = kL(z + ct) + kr(z − ct), where kr = 2π/λr and λr

is the resonant wavelength of the FEL radiation. In view of
this definition, we have

kL(z + ct) =
2kLz

1− kL/kr
− kL

kr − kL
ψ ≈ kuz , (3)

where ku = 2kL/(1 − kL/kr) ≈ 2kL and we have an-
ticipated the fact that kr � kL. The horizontal electron
motion can be decomposed into a slowly varying part xβ

and a fast, oscillatory part xw , i.e. x = xw + xβ . Taking
into account that w and u both change very little over the
scale of an undulator period λu = 2π/ku ≈ λL/2 (since
zR � λu), Eq. (2) can be integrated to give the wiggle
velocity

x′w ≈ −
K(z)

γ
cos[kuz − u(z)] , (4)

where K(z) = K0(w0/w) = K0(1 + z̄2/z2R)
−1/2 is

a z-dependent effective undulator parameter and K0 =
2eE0/(m0c

2ku) ≈ eE0/(m0c
2kL) is its value at the waist.

For (LI/zR)
2 � 1, we only need to consider the effect of

the z-dependence ofK on the phase equation, as in the case
of a tapered magnetic undulator. From the definition of the
phase, we obtain dψ/dz = kL+kr+(kL−kr)β

−1
z . Here,

the scaled longitudinal velocity βz can be approximated by
β−1
z ≈ 1 + β2

⊥/2 + 1/(2γ2), where the transverse nor-
malized velocity is in turn given by β2

⊥ ≈ x′
2
+ y′

2
=

(x′w + x′β)
2 + y′

2. Combining the above yields

dψ

dz
= 2kuδ − kr

2
(x′β

2
+ y′

2
+ 2x′wx

′
β)

− krK
2
0

4γ2
0

cos(2kuz − 2u)− krK
2
0

4γ2
0

[(w0

w

)2

− 1

]
, (5)

where δ = γ/γ0− 1 is the deviation from the average elec-
tron energy γ0m0c

2 and we have used the resonance con-
dition

ku =
kr
2γ2

0

(1 +
K2

0

2
) . (6)

Switching to the slowly varying phase variable θ = ψ +
Q0 sin(2kuz − 2u) - where Q0 = krK

2
0/(8kuγ

2
0) =

K2
0/(4 + 2K2

0) - we obtain the equation

dθ

dz
= θ′ = 2kuδ − kr

2
p2 + F (z) , (7)

where p = (x′β , y
′) and

F (z) =− 2kuQ0

[(w0

w

)2

− 1

]

=− 2kuQ0

[(
1 +

z̄2

z2R

)−1

− 1

]
. (8)

Thus, we conclude that the diffraction of the laser leads to
an inhomogeneous driving term on the RHS of the phase
equation (Eq. (7)). Turning to the energy exchange equa-
tion, we start from m0c

2dγ/dt = −evxEr ≈ −ecx′wEr.
Moreover, we express the electric field Er of the linearly
polarized FEL radiation as

Er =
1

2

∫ ∞

0

dνEν(x, z)e
iνkr(z−ct) + c.c. (9)

where ν = ω/ωr, Eν is the radiation amplitude, x = (x, y)
and ωr = 2γ2

0cku/(1 + K2
0/2) is the resonant frequency

(while c.c. stands for complex conjugate). Using the above
equation and the definition of θ, we obtain (upon averaging
over the fast wiggle motion)

dδ

dz
= κ1

∫ ∞

0

dνEν(x, z)e
−i[u(z)+Δνkuz]eiνθ + c.c. ,

(10)
where Δν = ν − 1 is the detuning and κ1 =
eK0[JJ ]/(4γ

2
0m0c

2), with [JJ ] = J0(Q0)− J1(Q0). We
note that the laser electric field has not been included in the
above derivation as it is 90 degrees out of phase with the
wiggle velocity and does not contribute to the averaging.
Eqs. (7) and (10) are the pendulum equation for the laser
undulator. As was implicitly assumed when we considered
an electron beam with a single waist, the wiggle-averaged
transverse motion is approximated by a drift. This assump-
tion is valid as long as the interaction length LI is smaller
than the exponentiation length βp = γ0w0/K0 for the pon-
deromotive laser defocusing effect.

Radiation Field Equation
In view of the single particle equations of motion and

following the standard perturbation approach [2, 3], we
find that, up to the onset of saturation effects, the opera-
tion of the laser undulator FEL can be described through
the following set of linearized, frequency-domain, Vlasov-
Maxwell equations:

∂fν
∂z

+ p
∂fν
∂x

+ iνθ′fν = −κ1
∂f0
∂δ

Eνe
−i[u(z)+Δνkuz]

(11)
and

∂Eν

∂z
+
∇2
⊥Eν

2ikr
= −κ2e

i[u(z)+Δνkuz]

∫
d2p

∫
dδfν ,

(12)
where κ2 = eK0[JJ ]/(2ε0γ0) and fν is the Fourier am-
plitude of the perturbation f1 to the beam distribution func-

MOPSO04 Proceedings of FEL2013, New York, NY, USA

ISBN 978-3-95450-126-7

28C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FEL Theory



tion. The background distribution f0 is given by

f0 =
I/(ec)

(2π)5/2σ2σ′2σδ

exp

(
− δ2

2σ2
δ

)

× exp

[
− (x− pz̄)2

2σ2
− p2

2σ′2

]
, (13)

where I is the peak current and σδ is the rms energy spread
of the electron beam. For an initially unmodulated beam,
Eqs. (11) and (12) can combined into a single equation for
the radiation amplitude Eν :

∂Eν

∂z
+
∇2
⊥Eν

2ikr
=

∫ z

0

dζ

∫
d2x̄Λ(x, x̄, z, ζ)Eν(x̄, ζ) ,

(14)
where

Λ(x, x̄, z, ζ) = −4iρ3k3u
πσ′2ξ

ei[G(ζ)−G(z)−u(ζ)+u(z)−Δνkuξ]×

e−2σ2
δ
k2
u
ξ2 exp

(
− (ζ̄x− z̄x̄)2

2σ2ξ2
− 1 + ikrσ

′2ξ

2σ′2ξ2
(x̄− x)2

)
.

(15)

Here, ξ = ζ − z, ζ̄ = ζ − zw = ξ + z̄, ρ is the FEL
parameter, given by

ρ =

(
I

16IA

K2
0 [JJ ]

2

γ3
0σ

2k2u

)1/3

(16)

(IA ≈ 17 kA is the Alfven current) and we have defined

G(z) = −2Q0zRku

[
tan−1

(
z̄

zR

)
− z̄

zR

]
(17)

so that dG(z)/dz = F (z). The derivation of Eqs. (14)
and (15) is entirely analogous to the one given in [3],
the only new terms being those which contain G and u.
Though the above equations are our basic result, we can
obtain additional insight into the physics of the system un-
der study by considering the transformation aν(x, z) =
Eν(x, z)e

i[G(z)−u(z)−Δνkuz]. The field equation then be-
comes (

∂

∂z
+ iΔνefku +

∇2
⊥

2ikr

)
aν(x, z)

=

∫ z

0

dζ

∫
d2x̄Ω(x, x̄, z, ζ)aν(x̄, ζ) , (18)

where

Ω(x, x̄, z, ζ) = −4iρ3k3u
πσ′2ξ

e−2σ2
δ
k2
u
ξ2

× exp

(
− (ζ̄x− z̄x̄)2

2σ2ξ2
− 1 + ikrσ

′2ξ

2σ′2ξ2
(x̄ − x)

2

)
(19)

is the new integral kernel and and, more importantly,

Δνef = Δν +
1

ku
[
du

dz
− F (z)] (20)

= Δν +
1

kuzR

(
1 +

z̄2

z2R

)−1

+ 2Q0

[(
1 +

z̄2

z2R

)−1

− 1

]

is an effective detuning containing the contributions of the
Gouy phase and the tapering-like effect due to diffraction.
Since the FEL bandwidth is of the order of ρ and we usually
have ρkuzR � 1, the former is typically very small and can
be ignored.

In order to solve the the FEL equation (Eq. (14)) for a
specified initial amplitude Eν(x, 0), we can expand Eν in
terms of a complete set of orthogonal transverse modes.
For full details on the expansion technique, we refer to [3].
Here, we merely present the main points. In particular, we
have

Eν(x, z) = ε̄ν

∞∑
p=0

∞∑
q=−∞

Cpq(z)ψpq(x, z) , (21)

where the coefficients Cpq are chosen to be dimensionless
and ε̄ν is a constant that can be related to the initial ampli-
tude. The transverse basis we employ consists of Gauss-
Laguerre modes

ψpq(x, z) =

(
p!

(p+ |q|)!
)1/2

(√
2r

wr

)|q|

× L|q|p

(
2r2

w2
r

)
ψ00(x, z)e

iqφe−i(2p+|q|)ur , (22)

where (r, φ) are polar coordinates in the transverse plane,
p and q are integers with p ≥ 0 and L

|q|
p are the associated

Laguerre polynomials. Here,

ψ00(x, z) =

(
krβ1

π

)1/2
1

z − iβ
exp

(
ikrr

2

2(z − iβ)

)
(23)

is the fundamental basis mode, defined through a complex-
valued function β = β1 + iβ2 = β(z), while

wr =

(
2

krβ1

)1/2

|z − iβ| (24)

and
ur = arctan

(
z + β2

β1

)
(25)

are, respectively, the spot size and the Gouy phase associ-
ated with it. The basis functions described above satisfy the
orthonormality condition

∫
d2xψ∗nmψpq = δpnδqm. Pro-

jecting Eq. (14) onto our Gauss-Laguerre basis, we ulti-
mately obtain a set of coupled integro-differential equa-
tions for the expansion coefficients:

dCnm

dz
= (2n+ |m|+ 1)

iCnm

2β1

dβ2

dz

+
√
n(n+ |m|)Cn−1,m

2β1

dβ

dz

−
√
(n+ 1)(n+ |m|+ 1)

Cn+1,m

2β1

dβ∗

dz

+

∫ z

0

dζ

∞∑
p=0

Cpm(ζ)Λnm
pm (z, ζ, β, βζ) , (26)
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where

Λnm
pm (z, ζ, β, βζ)

=

∫
d2xψ∗nm(x, z)

∫
d2x̄ψpm(x̄, ζ)Λ(x, x̄, z, ζ)

=
8iρ3k3u
D

(−1)p+n+1(p+ n+ |m|)!
(n!p!)

1/2
[(p+ |m|)!(n+ |m|)!]1/2

×
(
β1ζ

β1

) |m|+1

2 (z − iβ)
n+|m|

(ζ − iβζ)
p+|m|

(ζ + iβ∗ζ )
p

(z + iβ∗)
n

× ξe−2σ2
δ
k2
u
ξ2ei[G(ζ)−G(z)−u(ζ)+u(z)−Δνkuξ]

× (X − Y )
p
(X − 1)

n

Xp+n+|m|

dpb|m|

ap+|m|

× 2F1 (−p,−n;−p− n− |m| ; J) . (27)

In the equation given above, βζ is shorthand for β(ζ), 2F1

is a Gaussian hypergeometric function and

a = 1 +
σ′

2
z̄2

σ2
+ ikrσ

′2ξ
z − iβζ

ζ − iβζ
, (28)

d = a− 2krσ
′2β1ζξ

2

|ζ − iβζ |2
, (29)

b = 1 +
σ′

2
z̄ζ̄

σ2
+ ikrσ

′2ξ , (30)

Y =
β1ζ

β1

|z − iβ|2
|ζ − iβζ |2

b2

ad
, (31)

with

D1 =

(
1 +

σ′
2
z̄2

σ2
+ ikrσ

′2ξ

)
(ζ − iβζ)− ikrσ

′2ξ2 ,

(32)

D2 = krσ
′2ξ − i

(
1 +

σ′
2
ζ̄2

σ2

)

+ (
1

kr
+ iσ′

2
ξ)
ζ − iβζ

σ2
, (33)

D3 =
D1

z − iβ
, D =

iD1 + (z + iβ∗)D2

2β1
, (34)

X =
D

D3
, J = 1− Y

(X − Y )(X − 1)
. (35)

Since basis modes with different angular indices are un-
coupled, we usually concentrate on a particular value of
m. Generally speaking, after specifying the basis function
β(z), a truncated version of the set of Eq. (26) is solved nu-
merically. This yields information on the evolution of the
FEL radiation through the linear, high-gain regime. Specif-
ically, the radiation power and transverse size are, respec-
tively, given by

P (z) = P0

∞∑
n=0

|Cnm(z)|2 (36)

Table 1: Laser and Electron Beam Parameters
Parameter

Laser wavelength λL 10 μm
Laser power PL 1 TW
Pulse energy UL 70 J
Minimum spot size w0 330 μm
Rayleigh length zR 3 cm
beam energy γ0mc2 12.9 MeV
Undulator parameter K0 0.2
Resonant wavelength λr 4 nm
Peak current I 1 kA
Energy spread σδ 10−4

Normalized emittance γ0ε = γ0σσ
′ 0.1 μm

Minimum beta (e-beam) β0 = σ/σ′ 5 mm
Interaction length LI 1 cm
FEL parameter ρ 6.7× 10−4

Saturation power PS 5 MW

and

σ2
r(z) = (w2

r/4)× (37)

1
∞∑
n=0

|Cnm(z)|2

{
∞∑
n=0

(2n+ |m|+ 1)|Cnm(z)|2−

2Re[e2iur

∞∑
n=1

√
n(n+ |m|)Cn−1,m(z)C∗nm(z)]

}
,

where P0 is the input power. In this paper, we will only
consider seeding with a Gaussian mode so we may take
m = 0. In this case, it can be shown that selecting the basis
function according to the equation

dβ

dz
= − 2β1

C00

∫ z

0

dζC00(ζ)Λ
10
00(z, ζ, β, βζ) (38)

leads to reliable results with a fewer number of modes.

NUMERICAL RESULTS
To illustrate our theoretical analysis, we have considered

the parameters shown in Table 1. They refer to a laser
undulator-based, soft X-ray FEL using a 10 μm laser. We
emphasize that this parameter set is not the result of a full-
blown, rigorous optimization. Rather, it was obtained in the
following simplified way: given the desired wavelength for
the FEL radiation, the laser wavelength and power and the
e-beam brightness parameters (normalized emittance, en-
ergy spread and peak current), we determined the energy
and the rms size of the electron beam that would a) mini-
mize the the length of the interaction region while keeping
it smaller than the Rayleigh length b) ensure that the de-
tuning due to the diffraction of the laser is smaller than the
FEL bandwidth. In view of Eq. (20), the latter is quantified
by stipulating that 2Q0(z̄

2/z2R) ≤ (Q0/2)(L
2
I/z

2
R) < ρ.

Thus, we expect to limit the effect of laser diffraction on
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0
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z/β0

G
(z

)=
lo

g[
P(

z)
/P

0]

Figure 1: FEL gain G(z) = log[P (z)/P0] for Δν/(2ρ) =
0.0/− 0.5 (blue/red curves - the same legend holds for the
next two figures). Here, the solid lines refer to calculations
that include the variation of the undulator parameter with z
in contrast to the dashed lines, for which a uniform undu-
lator has been assumed.

0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

z/β0

(4
ρ 

k u)−1
dG

(z
)/d

z

Figure 2: Power growth rate (1/P )dP/dz (in units of
4ρku) as a function of the undulator distance z (in units
of β0).

the FEL gain and also to minimize the required energy of
the pulse. For our parameter study, we approximate the in-
teraction length by a fixed number (usually 20) of power
gain lengths, calculated either through the 1D expression
L1D = λu/(4π

√
3ρ) or by making use of Ming Xie’s fit-

ting formulas [4], on which the saturation power estimate
is also based.

Having established the basic operating parameters, we
perform a more rigorous calculation taking into account
the amplitude and phase inhomogeneities of the undula-
tor field, as well as the variation of the transverse elec-
tron beam size with z. Our linear analysis is based on
the expansion technique discussed earlier and its results are

0 0.5 1 1.5 2
0.1

0.15

0.2

0.25

0.3

0.35

z/β0

σ r(z
)/σ

e(z
)

Figure 3: Evolution of the radiation to electron beam size
ratio. This ratio is maximum close to the waist.

shown in Figs. 1-3. Plotted are results derived using a sin-
gle expansion mode, which have been shown to be in good
agreement with multi-mode calculations. All calculations
use a Gaussian mode as an external seed field. We ob-
serve significant gain (15-17 power exponentiations) over
the interaction length of 1 cm while we also verify that the
diffraction-induced tapering effect only has a small impact
on the gain. Finally, we note that this analysis does not in-
clude longitudinal space charge effects, which can become
important for FELs with small K parameters. In fact, for
our case, the typical space charge parameter Ωp/(2ρku) is
about 30%, which means that we are operating in a regime
where space charge can be of concern.

CONCLUSIONS
We have studied the operation of a laser undulator-based,

high gain FEL in the linear regime using a formalism that
takes into account three-dimensional effects in the e-beam
as well as amplitude and phase variations in the undulator
field due to the diffraction of the laser. Using our theoret-
ical analysis, we have explored some parameters for a soft
X-ray FEL using a 10 μm laser. In general, it would ap-
pear that such devices may be feasible, though they would
require a very high-brightness e-beam and relatively long
laser pulses, with a rather large pulse energy.
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