A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Boogert, S.T.

Paper Title Page
MOPLS080 A Laser-wire System at the ATF Extraction Line 738
 
  • S.T. Boogert, G.A. Blair, G.E. Boorman, A. Bosco, L. Deacon, C. Driouichi
    Royal Holloway, University of London, Surrey
  • A. Aryshev, H. Hayano, V. Karataev, K. Kubo, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • A. Brachmann, J.C. Frisch, M.C. Ross
    SLAC, Menlo Park, California
  • N. Delerue
    JAI, Oxford
  • S. Dixit, F.B. Foster, G.F. Gannaway, D.F. Howell, Q.M. Qureshi, A. Reichold, R. Senanayake
    OXFORDphysics, Oxford, Oxon
  • L.J. Jenner
    Cockcroft Institute, Warrington, Cheshire
  • T. Kamps
    BESSY GmbH, Berlin
 
  A new laser-wire system has been installed at the ATF extraction line at KEK, Tsukuba. The system aims at a micron-scale laser spot size and employs a mode-locked laser system. The purpose-built interaction chamber, light delivery optics, and lens systems are described, and the first results are presented.  
MOPLS081 A Study of Laser System Requirements for Application in Beam Diagnostics and Polarimetry at the ILC 741
 
  • S. Dixit, N. Delerue, K.J. Peach
    JAI, Oxford
  • G.A. Blair, S.T. Boogert, G.E. Boorman, A. Bosco, C. Driouichi
    Royal Holloway, University of London, Surrey
  • A. Brachmann, J.C. Frisch, M.C. Ross
    SLAC, Menlo Park, California
  • F.B. Foster, D.F. Howell, Q.G. Quelch, Q.M. Qureshi, A. Reichold
    OXFORDphysics, Oxford, Oxon
  • G.J. Hirst, I. N. Ross
    CCLRC/RAL, Chilton, Didcot, Oxon
  • V. Soskov, V. Variola, Z.F. Zomer
    LAL, Orsay
  • J. Urakawa
    KEK, Ibaraki
 
  Advanced laser systems will be essential for a range of diagnostics devices at the ILC. High average power, excellent stability and reliability will be crucial in order to deliver the information required to attain the necessary ILC luminosity. The key parameters are listed together with the R&D required to achieve the necessary laser system performance.  
TUPCH049 Proposal for a Fast Scanning System Based on Electro-optics for Use at the ILC Laser-wire 1118
 
  • A. Bosco, G.A. Blair, S.T. Boogert, G.E. Boorman, L. Deacon, C. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
 
  Electro-optic devices open the possibility of ultra-fast scanning systems for use in intra-train scanning at the ILC, where scanning rates in excess of 100 kHz may be required. A first study of the possibilities is presented together with the first results from a prototype system.  
TUPCH050 Beam Profile Measurements with the 2-D Laser-wire 1121
 
  • G.A. Blair, I.V. Agapov, S.T. Boogert, G.E. Boorman, A. Bosco, J. Carter, C. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • K. Balewski, H.-C. Lewin, F. Poirier, S. Schreiber, K. Wittenburg
    DESY, Hamburg
  • N. Delerue, D.F. Howell
    OXFORDphysics, Oxford, Oxon
  • T. Kamps
    BESSY GmbH, Berlin
 
  A new laser-wire system has been installed at the PETRA ring at DESY, Hamburg. The system is set up to scan in two dimensions using piezo-driven mirrors and employs a newly acquired injection seeded Q-switched laser. The system is described and first results are presented.  
TUPCH105 Performance of a Nanometer Resolution BPM System 1256
 
  • S. Walston, C.C. Chung, P. Fitsos, J.G. Gronberg
    LLNL, Livermore, California
  • S.T. Boogert
    Royal Holloway, University of London, Surrey
  • J.C. Frisch, J. May, D.J. McCormick, M.C. Ross, S. Smith, T.J. Smith
    SLAC, Menlo Park, California
  • H. Hayano, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Y.K. Kolomensky, T. Orimoto
    UCB, Berkeley, California
  • A. Lyapin, S. Malton, D.J. Miller
    UCL, London
  • R. Meller
    Cornell University, Department of Physics, Ithaca, New York
  • M. Slater, M.T. Thomson, D.R. Ward
    University of Cambridge, Cambridge
  • V.V. Vogel
    DESY, Hamburg
  • G.R. White
    OXFORDphysics, Oxford, Oxon
 
  International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved – ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of ± 20 microns. We report on the progress of these ongoing tests.  
MOPLS067 Test Beam Studies at SLAC's End Station A, for the International Linear Collider 700
 
  • M. Woods, C. Adolphsen, R. Arnold, G.B. Bowden, G.R. Bower, R.A. Erickson, H. Fieguth, J.C. Frisch, C. Hast, R.H. Iverson, Z. Li, T.W. Markiewicz, D.J. McCormick, S. Molloy, J. Nelson, M.T.F. Pivi, M.C. Ross, S. Seletskiy, A. Seryi, S. Smith, Z. Szalata, P. Tenenbaum
    SLAC, Menlo Park, California
  • D. Adey, M.C. Stockton, N.K. Watson
    Birmingham University, Birmingham
  • M. Albrecht, M.H. Hildreth
    Notre Dame University, Notre Dame, Iowa
  • W.W.M. Allison, V. Blackmore, P. Burrows, G.B. Christian, C.C. Clarke, G. Doucas, A.F. Hartin, B. Ottewell, C. Perry, C. Swinson, G.R. White
    OXFORDphysics, Oxford, Oxon
  • D.A.-K. Angal-Kalinin, C.D. Beard, J.L. Fernandez-Hernando, F. Jackson, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R.J. Barlow, A. Bungau, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • S.T. Boogert
    Royal Holloway, University of London, Surrey
  • D.A. Burton, J.D.A. Smith, R. Tucker
    Lancaster University, Lancaster
  • W.E. Chickering, C.T. Hlaing, O.N. Khainovski, Y.K. Kolomensky, T. Orimoto
    UCB, Berkeley, California
  • C. Densham, R.J.S. Greenhalgh
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • V. Duginov, S.A. Kostromin, N.A. Morozov
    JINR, Dubna, Moscow Region
  • G. Ellwood, P.G. Huggard, J. O'Dell
    CCLRC/RAL, Chilton, Didcot, Oxon
  • F. Gournaris, A. Lyapin, B. Maiheu, S. Malton, D.J. Miller, M.W. Wing
    UCL, London
  • M.B. Johnston
    University of Oxford, Clarendon Laboratory, Oxford
  • M.F. Kimmitt
    University of Essex, Physics Centre, Colchester
  • H.J. Schriber, M. Viti
    DESY Zeuthen, Zeuthen
  • N. Shales, A. Sopczak
    Microwave Research Group, Lancaster University, Lancaster
  • N. Sinev, E.T. Torrence
    University of Oregon, Eugene, Oregon
  • M. Slater, M.T. Thomson, D.R. Ward
    University of Cambridge, Cambridge
  • Y. Sugimoto
    KEK, Ibaraki
  • S. Walston
    LLNL, Livermore, California
  • T. Weiland
    TEMF, Darmstadt
  • M. Wendt
    Fermilab, Batavia, Illinois
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  The SLAC Linac can deliver to End Station A a high-energy test beam with similar beam parameters as for the International Linear Collider for bunch charge, bunch length and bunch energy spread. ESA beam tests run parasitically with PEP-II with single damped bunches at 10Hz, beam energy of 28.5 GeV and bunch charge of (1.5-2.0)·1010 electrons. A 5-day commissioning run was performed in January 2006, followed by a 2-week run in April. We describe the beamline configuration and beam setup for these runs, and give an overview of the tests being carried out. These tests include studies of collimator wakefields, prototype energy spectrometers, prototype beam position monitors for the ILC Linac, and characterization of beam-induced electro-magnetic interference along the ESA beamline.