Author: Krzywinski, J.
Paper Title Page
MOP090 Soft X-ray Self-seeding Simulation Methods and their Application for LCLS 264
 
  • S. Serkez
    DESY, Hamburg, Germany
  • Y. Ding, Z. Huang, J. Krzywinski
    SLAC, Menlo Park, California, USA
 
  Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. We study radiation propagation through the grating monochromator installed at LCLS. The monochromator design is based on a toroidal variable line spacing grating working at a fixed incidence angle mounting without an entrance slit. It covers the spectral range from 500eV to 1000eV. The optical system was studied using wave optics method to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the finite size of the coherent source, third-order aberrations and height error of the optical elements. Wave optics is the only method available, in combination with FEL simulations, to simulate performance of the monochromator without exit slit. Two approaches for time-dependent simulations are presented, compared and discussed. Also pulse-front tilt phenomenon effect is illustrated.  
 
TUB03 FEL Overcompression in the LCLS 337
 
  • J.L. Turner, F.-J. Decker, Y. Ding, Z. Huang, R.H. Iverson, J. Krzywinski, H. Loos, A. Marinelli, T.J. Maxwell, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.J. Welch, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Overcompression of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Center is studied. The studies and operational implications are summarized in this talk.
 
slides icon Slides TUB03 [4.493 MB]  
 
TUC02
Soft X-ray Self-seeding Setup and Results at LCLS  
 
  • D.F. Ratner, J.W. Amann, D.K. Bohler, M. Boyes, D. Cocco, F.-J. Decker, Y. Ding, D. Fairley, Y. Feng, J.B. Hastings, P.A. Heimann, Z. Huang, J. Krzywinski, H. Loos, A.A. Lutman, G. Marcus, A. Marinelli, T.J. Maxwell, S.P. Moeller, P.A. Montanez, D.S. Morton, H.-D. Nuhn, D.R. Walz, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
  • K. Chow, L.N. Rodes
    LBNL, Berkeley, California, USA
  • U. Flechsig
    PSI, Villigen PSI, Switzerland
  • S. Serkez
    DESY, Hamburg, Germany
 
  The soft X-ray self seeding program was designed to provide near transform-limited pulses in the range of 500 eV to 1000 eV. The project was a three-way collaboration between SLAC, Lawrence Berkeley National Lab, and the Paul Scherrer Institute in Switzerland. Installation finished in the Fall of 2013, and after the early stages of commissioning we have measured up to 0.5mJ pulse energy and resolving powers of up to 5000 across the design wavelength range, representing a several-fold increase in the brightness compared to the normal LCLS operating mode. Future work will aim to increase the total pulse energy and establish self-seeding as a robust user operation mode.  
slides icon Slides TUC02 [10.464 MB]  
 
FRA01
Prospects of Stimulated X-ray Raman Scattering with Free-Electron Laser Sources  
 
  • N. Rohringer, V. Kimberg, C. Weninger
    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
  • M. Agaker, R. Feifel, M. Mucke, J. Nordgren, J.E. Rubensson, C. Sathe, R. Squibb, V. Zhaunerchyk
    Uppsala University, Uppsala, Sweden
  • C. Bostedt, J.D. Bozek, S. Carron Montero, R.N. Coffee, J. Krzywinski, A. Lindahl, A. Lutmann, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • B. Erk, D. Rolles
    DESY, Hamburg, Germany
  • M. Ilchen
    XFEL. EU, Hamburg, Germany
  • T. Kierspel, J. Küpper, T.G. Mullins
    University of Hamburg, Hamburg, Germany
  • O.D. Mücke
    CFEL, Hamburg, Germany
  • M. Purvis, J.J. Rocca, D.P. Ryan
    CSU, Fort Collins, Colorado, USA
  • A. Sanchez-Gonzalez
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  XFELs might open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain, to study electron motion at unprecedented time and length scales. A promising x-ray pump probe technique is based on stimulated electronic x-ray Raman scattering. I will present the first experimental demonstration of stimulated electronic x-ray Raman scattering in a gas sample of neon*. Despite the limited spectral coherence of SASE XFELs, high-resolution spectra can be obtained by statistical methods, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules** and the results of a recent experiment in CO will be discussed. The high-gain regime, involving exponential amplification and strong-field effects will be contrasted to stimulated scattering at moderate x-ray intensities, more appropriate for spectroscopic studies. A critically assessment of the feasibility of nonlinear x-ray spectroscopic techniques and requirements on the stability and pulse parameters of XFEL sources that could enable these new techniques, will be presented.
* C. Weninger et al., Phys. Rev. Lett. 111, 233902 (2013)
** C. Weninger and N. Rohringer, Phys Rev A 88, 053421 (2013)
 
slides icon Slides FRA01 [3.771 MB]