Prospects of stimulated x-ray Raman scattering with Free-Electron Laser Sources

FEL 2014, Basel, August 28, 2014

1

Nina Rohringer

Max Planck Institut für Physik Komplexer Systeme, Dresden Center for Free-Electron Laser Science, Hamburg

Acknowledgements

Colorado State University: J.J. Rocca, D. Ryan, M. Purvis

LLNL: R. London, G. Brown, A. Graf

LCLS, SLAC: J. Bozek, C. Bostedt, T. Maxwell, R. Coffee, S. Carron Monterro, A. Lindahl, M. Ilchen, A. Lutman, J. Krzywinski

CFEL / MPI PKS: V. Kimberg, C. Weninger, S.B. Zhang

CFEL / University of Hamburg: J. Küpper, T. Kierspel, T. Mullins

CFEL / DESY: B. Erk, D. Rolles, O. Mücke

Imperial College London: A. Sanchez-Gonzalez

University of Gothenburg: R. Feifel, V. Zhaunerchyk

Uppsala University:

M. Agaker, C. Sathe, R. Squibb, M. Mucke, J. Nordgren, J. E. Rubensson

A route to nonlinear spectroscopy with x-rays

Photoionization atomic inner-shell x-ray laser

Stimulated x-ray Raman scattering in atoms

Rohringer et al., *Nature* **481**, 488 (2012) Weninger et al., PRL **111**, 233902 (2013)

Kimberg & Rohringer, PRL **110**, 043901 (2012)

Recent experiment: LCLS, Feb. 2014 Upcoming experiment: FLASH, Oct. 2014

Stimulated X-ray Raman scattering a building block for nonlinear x-ray spectroscopy

S. Mukamel et al. (PRL 89, 043001 (2002), PRB 72, 235110 (2005); PRA 76, 012504 (2007); PRB 79, 085108 (2009)

Stimulated resonant inelastic x-ray scattering in optically dense gas samples

Schematic experimental setup

Diagnostics:

- Inline spectrometer for monitoring transmitted XFEL and amplified scattered x rays

1st demonstration of stimulated elecronic x-ray Raman scattering stimulated resonant inelastic x-ray scattering in Neon

Weninger et al., PRL 111, 233902 (2013)

Emitted line profile as a function of pump photon energy

Phys. Rev. Lett. 111, 233902 (2013)

Stochastic line shift due to "anomalous" linear dispersion of resonance scattering

Master Equations for atomic and ionic density matrices coupled to Maxwell's equation

C. Weninger & N.R., Phys. Rev. A 88, 053421 (2013)

Simulated spectral / temporal intensity profiles of sRIXS process

C. Weninger & N.R., Phys. Rev. A 88, 053421 (2013)

Line profile – comparison of experiment to simulation

Phys. Rev. Lett. **111**, 233902 (2013)

High-resolution x-ray Raman spectroscopy by statistical analysis (covariance mapping)

C. Weninger & N.R., Phys. Rev. A 88, 053421 (2013)

Soft x-ray laser seeding at LCLS – new opportunities for stimulated Raman scattering

Self-seeded x-ray pulse, with SASE background

2-color mode within SASE bandwidth possible: 1 color self-seeded, 2nd color SASE Short pulses possible by using slotted foil

Raman Signal Strength as a Function of Pump Energy

Number of seed photons: 10³-10⁴ (varying due to spectral sidebands of the XFEL) Estimated number of photons of spontaneous RIXS: 100 Saturated amplification by 7-8 orders of magnitude

C. Weninger et al., Phys. Rev. Lett. **111**, 233902 (2013)

Results of recent experiment at the AMO instrument @ LCLS February 6-10, 2014 (60 hours of beamtime)

Simulated RIXS spectra on π^* resonance in CO strong pump pulse

Predicted emission spectrum as a function of gain-length strong pumping regime

Kimberg & Rohringer, manuscript in preparation

- •Strong pump field propagation effects
- •Rabi splitting of the core-excited transitions
- Induced ground state wave packet dynamics
- •Non-linear propagation effects

Simulated RIXS spectra on π^* resonance in CO

weak pump pulse Find regime of best signal contrast (at least ~20-30% change) Challenge: Raman gain has to statistically exceed SASE fluctuation

Kimberg & Rohringer, manuscript in preparation

Covariance map of 5000 simulated single-shot spectra

- N_{pump}=N_{dump}=10¹⁰ photons
- Resolution of the vibrational structure

Mapping potential energy surfaces

Two-color SASE mode (shift 5, no gas)

534 eV ("big" pulse on pump transition, 0.75 - 1 mJ pulse energy), 525 eV ("small" pulse on dump transition, ~ 0.01 mJ pulse energy)

 10^{2}

 10^{0}

2-color SASE modes: Lutman et al., PRL **110**, 134801 (2013). A. Marinelli et al., PRL **111**, 134801 (2013)

Two-color stimulated RIXS in CO Spectra as a function of incoming photon energy

Identifying the zoo of absorption and interference (?) dips

Challenges & Outlook

- Large spectral shot-to-shot fluctuation on top of SASE fluctuation (e-beam energy)
 -> hampers observation of sRIXS in averaged spectra
 -> requires recording of several 10.000 single-shot spectra
- Assess spectral stability and necessary gain regime for future self-seeded and seeded FELs
 - -> Optically dense samples pose real problems for spectroscopy (pulse propagation, spectral distortions,...)
- Need for fast read-out, small-pixel detectors with high dynamic range

-Model calculations starting from vibrational wave-packets, to probe real dynamics

-Need to develop statistical analysis techniques beyond covariance analysis and link it to higher-order susceptibilities

- Study of coupled nuclear-electron dynamics (vibronic coupling, conical intersections,...)

- New detection schemes beyond simple forward scattering geometry
 -> transient grating spectroscopy
 - -> non-linear photo- or Auger-electron spectroscopy