Author: Zholents, A.
Paper Title Page
MOOHC2 The US Electron Ion Collider Accelerator Designs 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZBA3 Strongly Tapered Helical Undulator System for TESSA-266 63
TUPLH14   use link to see paper's listing under its alternate paper code  
 
  • T.J. Campese, R.B. Agustsson, I.I. Gadjev, A.Y. Murokh
    RadiaBeam, Marina del Rey, California, USA
  • W. Berg, A. Zholents
    ANL, Lemont, Illinois, USA
  • P.E. Denham, P. Musumeci, Y. Park
    UCLA, Los Angeles, USA
 
  Funding: DOE SBIR Award No. DE-SC0017102
RadiaBeam, in collaboration with UCLA and Argonne National Laboratory (ANL), is developing a strongly tapered helical undulator system for the Tapering Enhanced Stimulated Superradiant Amplification experiment at 266 nm (TESSA-266). The experiment will be carried out at the APS LEA facility at ANL and aims at the demonstration of very high energy conversion efficiency in the UV. The undulator system was designed by UCLA, engineered by RadiaBeam, and is presently in fabrication at RadiaBeam. The design is based on a permanent magnet Halbach scheme and includes a short 30 cm long buncher section and four 1 m long undulator sections. The undulator period is fixed at 32 mm and the magnetic field amplitude can be tapered by tuning the gap along the interaction. Each magnet can be individually adjusted by 1.03 mm, offering up to 25% magnetic field tunability with a minimum gap of 5.58 mm. A custom designed 316L stainless steel beampipe runs through the center with a clear aperture of 4.5 mm. This paper discusses the design and engineering of the undulator system, fabrication status, and plans for magnetic measurements, and tuning.
 
slides icon Slides MOZBA3 [8.942 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA3  
About • paper received ※ 27 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM13 Investigations of the Electron Beam Energy Jitter Generated in the Photocathode RF Gun at the Advanced Photon Source Linac 124
 
  • J.C. Dooling, D. Hui, A.H. Lumpkin, T.L. Smith, Y. Sun, K.P. Wootton, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357.
Characterizations continue of the electron beam properties of a recently installed S-band photocathode (PC) rf gun at the Advanced Photon Source Linac facility. In this case, we have utilized a low-energy spectrometer beam line located 1.3 m downstream of the gun cavity to measure the electron beam energy, energy spread, and energy jitter. The nominal energy was 6.5 MeV using a gun gradient of 110 MV/m, and the energy spread was ~17 keV when driven by a 2.5-ps rms duration UV laser pulse at the selected rf gun phase. An energy jitter of 25 keV was initially observed in the spectrometer focal plane images. This jitter was partly attributed to the presence of both the 2nd and 3rd harmonics of the 119 MHz synchronization signal provided to the phase locked loop of the drive laser oscillator. The addition of a 150-MHz low-pass filter in the 119-MHz line strongly attenuated the two harmonics and resulted in a reduced energy jitter of ~15 keV. Comparisons of the gun performance to ASTRA simulations will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM13  
About • paper received ※ 28 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLH26 Design of a Compact Wakefield Accelerator Based on a Corrugated Waveguide 232
SUPLE18   use link to see paper's listing under its alternate paper code  
 
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
  • G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
 
  A compact wakefield accelerator is being developed at the Argonne National Laboratory for a future multiuser x-ray free electron laser facility. A cylindrical structure with a 2 mm internal diameter and fine corrugations on the wall will be used to create Čerenkov radiation. A "drive" bunch producing radiation at 180 GHz will create accelerating gradients on the order of 100 MV/m for the "witness" bunch. The corrugated structure will be approximately half meter long with the entire accelerator spanning a few tens of meters. An ultra-compact transition region between each corrugated structure has been designed to accommodate an output coupler, a notch filter, an integrated offset monitor, bellows, pumping and water cooling ports. The output coupler will extract on the order of a kilowatt of power from the Čerenkov radiation unused by the witness bunch. The integrated offset monitor is a novel diagnostic which will measure the cumulative offset of the electron beam in the corrugated structure upstream of the monitor. The specific details of the rf design will be presented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLH26  
About • paper received ※ 27 August 2019       paper accepted ※ 12 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLO23 Investigation of Various Fabrication Methods to Produce a 180GHz Corrugated Waveguide Structure in 2mm Diameter ­0.5m ­Long Copper Tube for the Compact Wakefield Accelerator for FEL Facility 286
 
  • K.J. Suthar, D.S. Doran, W.G. Jansma, S.S. Sorsher, E. Trakhtenberg, G.J. Waldschmidt, A. Zholents
    ANL, Lemont, Illinois, USA
  • A.E. Siy
    UW-Madison/PD, Madison, Wisconsin, USA
 
  Funding: This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated by the Argonne National Laboratory under Contract No. DE­AC02­06CH11357.
Argonne National Laboratory is developing a 180 GHz wakefield structure that will house in a co-linear array of accelerators to produce free-electron laser-based X-rays. The proposed corrugated waveguide structure will be fabricated on the internal wall of 0.5m long and 2mm nominal diameter copper tube. The estimated dimensions of these parallel corrugations are 200 µm in pitch with 100 µm side length (height and width). The length scale of the structure and requirements of the magnetic field-driven dimensional tolerances have made the structure challenging to produce. We have employed several method such as optical lithography, electroforming, electron discharge machining, laser ablation, and stamping to produce the initial structure from a sheet form. The successive fabrication steps, such as bending, brazing, and welding, were performed to achieve the long tubular-structure. This paper discusses various fabrication techniques, characterization, and associated technical challenges in detail.
[1] A. Zholents et al., Proc. 9-th Intern. Part. Acc. Conf., IPAC2018, Vancouver, BC, Canada, p. 1266, (2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO23  
About • paper received ※ 27 August 2019       paper accepted ※ 06 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLO06 Start-to-End Simulation of the Drive-Beam Longitudinal Dynamics for Beam-Driven Wakefield Acceleration 858
SUPLE03   use link to see paper's listing under its alternate paper code  
 
  • W.H. Tan, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • A. Zholents, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Science under contracts No. DE-AC02-06CH11357 (via a laboratory- directed R&D program at ANL) and No. DE-SC0018656 at NIU.
Collinear beam-driven wakefield acceleration (WFA) relies on shaped driver beam to provide higher accelerating gradient at a smaller cost and physical footprint. This acceleration scheme is currently envisioned to accelerate electron beams capable of driving free-electron laser *. Start-to-end simulation of drive-bunch beam dynamics is crucial for the evaluation of the design of accelerators built upon WFA. We report the start-to-end longitudinal beam dynamics simulations of an accelerator beamline capable of producing high charge drive beam. The generated wakefield when it passes through a corrugated waveguide results in a transformer ratio of 5. This paper especially discusses the challenges and criteria associated with the generation of temporally-shaped driver beam, including the beam formation in the photoinjector, and the influence of energy chirp control on beam transport stability.
A. Zholents et al., "A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility"
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLO06  
About • paper received ※ 27 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)