Author: Plastun, A.S.
Paper Title Page
MOOHC2 The US Electron Ion Collider Accelerator Designs 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE01 Python Scripts for RF Commissioning at FRIB 563
 
  • H. Maniar, E. Daykin, D.G. Morris, A.S. Plastun, H.T. Ren, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Abstract RF commissioning at FRIB involves QWR cavities (β=0.085 and β=0.041), HWR cavities (β=0.29 and β=0.53) and few room temperature devices. Each RF system has many process variables for LLRF and amplifier control located on different pages of CS-Studio. Efficient handling of all these PVs can be challenging for RF experts. Several scripts using Python have been developed to facilitate this process. User interface application has been developed using Qt Designer and PyQt package of Python, for ease of access of all scripts. These scripts are useful for mass ac-tions (for multiple systems) including turning on/ off LLRF controllers and amplifiers, resetting interlocks/ errors, chang-ing a PV value, etc. Python scripts are also used to quickly prototype the auto-start procedure for QWR cavities, which eventually is implemented on IOC driver. The application sends commands to IOC driver with device name, PV name and value to be changed. Future developments can be con-verting to state-notation language on IOC to add channel access security. This application intends to reduce time and efforts for RF commissioning at FRIB.  
poster icon Poster TUPLE01 [0.429 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE01  
About • paper received ※ 27 August 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZBA2 Experience and Lessons in FRIB Superconducting Quarter-Wave Resonator Commissioning 646
 
  • S.H. Kim, H. Ao, F. Casagrande, W. Chang, C. Compton, A. Facco, V. Ganni, E. Gutierrez, W. Hartung, N. Hasan, P. Knudsen, T.L. Larter, H. Maniar, S.J. Miller, D.G. Morris, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, L. Popielarski, H.T. Ren, K. Saito, M. Thrush, D.R. Victory, J. Wei, M. Xu, T. Xu, Y. Yamazaki, C. Zhang, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  The superconducting (SC) linear accelerator (linac) for the Facility for Rare Isotope Beams (FRIB) has one quarter-wave resonator (QWR) segment and two half-wave resonator (HWR) segments. The first linac segment (LS1) contains twelve β = 0.041 and ninety-two β = 0.085 QWRs operating at 80.5 MHz, and thirty-nine SC solenoids. Superconducting radiofrequency (SRF) commissioning and beam commissioning of LS1 was completed in April 2019. The design accelerating gradients (5.1 MV/m for β = 0.041 and 5.6 MV/m for β = 0.085) were achieved in all cavities with no multipacting or field emission issues. The cavity field met the design goals: peak-to-peak stability of ±1% in amplitude and ±1° in phase. We achieved 20.3 MeV/u ion beams of Ar, Kr, Ne, and Xe with LS1. In this paper, we will discuss lessons learned from the SRF commissioning of the cryomodules and methods developed for efficient testing, conditioning, and commissioning of more than 100 SC cavities, each with its own independent RF system.  
slides icon Slides WEZBA2 [2.841 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEZBA2  
About • paper received ※ 03 September 2019       paper accepted ※ 05 December 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH03 Redesign of ReA3 4-Rod RFQ 807
 
  • A.S. Plastun, P.N. Ostroumov, A.C.C. Villari, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • A.C.C. Villari, Q. Zhao
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. DoE Office of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University.
The present RFQ of ReA3 reaccelerator at Michigan State University (MSU) has been commissioned in 2010. This 4-rod RFQ was designed to accelerate the prebunched 80.5 MHz beams with the lowest Q/A = 1/5. However, the lack of proper cooling limited the RFQ performance to the pulsed operation with the lowest Q/A = 1/4. The design voltage for Q/A = 1/5 has never been reached even in a pulsed mode due to the sparking. In 2016 we initiated the upgrade of ReA3 RFQ to support high duty cycle (up to CW) operation with Q/A = 1/5 beams. The upgrade included the new rods with trapezoidal modulation, and new stems with improved cooling. The redesigned 80.5 MHz RFQ will consume only 65% rf power of the present RFQ for Q/A = 1/5 beam. It will provide the transmission up to 78% for 16.1 MHz beams and 89% for 80.5 MHz beams. High reliability and efficiency of the RFQ are very important for the going-on reaccelerator upgrade to ReA6 and for future operation as a part of FRIB. The electrodes have been manufactured and are being installed. The RF and beam tests are scheduled to summer 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH03  
About • paper received ※ 27 August 2019       paper accepted ※ 01 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH04 Beam Envelope Reconstruction for FRIB-FS1 Transport Line Using Beam Position Monitors 810
 
  • T. Yoshimoto, S. Cogan, J.L. Crisp, K. Fukushima, S.M. Lidia, T. Maruta, P.N. Ostroumov, A.S. Plastun, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beam (FRIB) includes a heavy ion superconducting (SC) linac. Recently we completed beam commissioning of the Linac Segment 1 (LS1) and 45° bend section of the Folding Segment 1 (FS1). Four ion species, 40Ar9+, 20Ne6+, 86Kr17+ and 129Xe26+ were successfully accelerated to a beam energy of 20.3 MeV/u. We explored the possibility of non-invasive beam diagnostics for online beam envelope monitoring based on beam quadrupole moments derived from Beam Position Monitors (BPMs)*. In future operations, various ion beam species will be accelerated and minimization of beam tuning time is critical. To address this requirement, it is beneficial to use BPMs to obtain beam Twiss parameters instead of wire scanners. This paper reports the results of BPM-based beam Twiss parameters evolution in the FS1.
* R. E. Shafer, "Laser Diagnostic for High Current H beams", Proc. 1998 Beam Instrumentation Workshop (Stanford). A.I.P. Conf. Proceedings, (451), 191.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH04  
About • paper received ※ 27 August 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH06 Commissioning Status of the FRIB Front End 813
 
  • H.T. Ren, J. Brandon, N.K. Bultman, K.D. Davidson, E. Daykin, T. Elkin, B. Galecka, P.E. Gibson, L. Hodges, K. Holland, D.D. Jager, M.G. Konrad, B.R. Kortum, S.M. Lidia, G. Machicoane, I.M. Malloch, H. Maniar, T. Maruta, G. Morgan, D.G. Morris, P. Morrison, A.C. Morton, P.N. Ostroumov, A.S. Plastun, E. Pozdeyev, X. Rao, T. Russo, J.W. Stetson, R. Walker, J. Wei, Y. Yamazaki, T. Yoshimoto, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • S. Renteria
    NSCL, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The FRIB Front End was successfully commissioned in 2017 with commissioning goals achieved and Key Per-formance Parameters (KPP) demonstrated for both 40Ar9+ and 86Kr17+ beams. Two more ion species, 20Ne6+ and 129Xe26+, have been commissioned on the Front End and delivered to the superconducting linac during the beam commissioning of Linac Segment 1 (LS1) in March 2019. In August 2019, Radio Frequency Quadrupole (RFQ) conditioning reached the full design power of 100 kW continuous wave (CW) that is required to accelerate Ura-nium beams. Start-up/shutdown procedures and opera-tional screens were developed for the Front End subsys-tems for trained operators, and auto-start and RF fast re-covery functions have been implemented for the Front End RFQ and bunchers. In this paper, we will present the current commissioning status of the Front End, and per-formance of the main technical systems, such as the ECR ion source and RFQ.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH06  
About • paper received ※ 01 September 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH07 Commissioning of the FRIB/NSCL New ReA3 4-Rod Radio Frequency Quadrupole Accelerator 817
 
  • S. Nash, J.F. Brandon, D.B. Crisp, T. Summers, A.C.C. Villari, Q. Zhao
    NSCL, East Lansing, Michigan, USA
  • P.N. Ostroumov, A.S. Plastun
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work was supported by the National Science Foundation under Grant PHY-15-65546
The reaccelerator facility ReA3 at the National Superconducting Cyclotron Laboratory is a state-of-the-art accelerator for ions of rare and stable isotopes. The first stage of acceleration is provided by a 4-rod radio-frequency quadrupole (RFQ) at 80.5 MHz, which accelerates ions from 12 keV/u to 530 keV/u. The internal copper acceleration structure of the RFQ was re-designed. The goal was to improve transmission while allowing to operate the RFQ in CW and accelerating ions with A/Q from 2 to 5. In this paper, we summarize the steps involved in the disassembly of the existing structure, preparation work on the retrofitted vacuum vessel, installation of the new components, acceptance testing, and commissioning of the completed RFQ.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH07  
About • paper received ※ 29 August 2019       paper accepted ※ 19 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA3 Status of Beam Commissioning in FRIB Driver Linac 951
 
  • T. Maruta, S. Cogan, K. Fukushima, M. Ikegami, S.H. Kim, S.M. Lidia, G. Machicoane, F. Marti, D.G. Morris, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, J. Wei, T. Xu, T. Yoshimoto, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The beam commissioning of linac segment 1 (LS1) composed of fifteen cryomodules consisting of total 104 superconducting (SC) resonators and 36 SC solenoids was successfully completed. Four ion beam species, Ne, Ar, Kr and Xe were successfully accelerated up to 20.3 MeV/u. The FRIB driver linac in its current configuration became the highest energy continuous wave hadron linac. We will report a detailed study of beam dynamics in the LS1 prior to and after stripping with a carbon foil.
 
slides icon Slides THZBA3 [11.377 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA3  
About • paper received ※ 04 September 2019       paper accepted ※ 20 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)