
PYTHON SCRIPTS FOR RF COMMISSIONING AT 
FRIB

Work supported the U.S. Dept. of Energy Office of Science under Cooperative Agreement DE-SC0000661

Harsh Maniar, Shen Zhao, Dan Morris, Alexander Plastun, Haitao Ren, Evan Daykin
Facility for Rare Isotope Beams, MSU, East Lansing, MI 48824, USA

FRIB Linac

The FRIB linac consists of
• room temperature front end devices: Low Energy Beam Transport (LEBT), Multi Harmonic Buncher

(MHB), Radio Frequency Quadrupole (RFQ) and Medium Energy Beam Transport (MEBT) bunchers
• 104 Quarter-Wave Resonators (QWR)
• 220 Half-Wave Resonators (HWR)

Resonator QWR1 QWR2 HWR1 HWR2
β 0.041 0.085 0.29 0.53

f (MHz) 80.5 80.5 322 322
No. of cavities 12 92 72 148

Tuner Stepper Stepper Pneumatic Pneumatic

• CS-Studio engineering screens have been developed for users to access all RF parameters related to 
Low Level Radio Frequency (LLRF) Controller and Amplifier

• Each RF system contains around 400 process variables (PV) including parameters for interlocks, control 
parameters, cavity conditioning, calibration, attenuation, system configuration etc.

• All these PVs are accessible using Experimental Physics and Industrial Control System (EPICS) 
channels. IOC driver handles read/ write actions to these PVs

• Efficient handling of all these PVs can be challenging for RF experts

Python

RF Python Scripts

• Python offers several convenient features for scientific and engineering programming. The Python 
EPICS package (PyEpics) is useful to interact with EPICS channel access PVs. 

• ‘import epics’

• The main components of this module include 
• functions such as caget (), caput (), camonitor () to simply read, write, monitor PVs
• a ca module, useful for low-level epics channel access
• a PV object, useful for higher–level epics channel access 
• timeout and wait options for large data arrays and disconnected PVs
• count and numpy options to return number of elements for array data and arithmetic 

functions

• Qt Designer is the Qt tool helpful in designing and building graphical user interfaces. Utilities from PyQt
library helps to generate Python files 

• Built-in widgets and forms
• XML ‘.ui’ format to store design files
• ‘uic’ module to convert to C++ code
• ‘pyuic’ module to convert to Python code

• Any user interface files ‘.ui’ can be converted to Python files ‘.py’ using this command in terminal 
• ‘pyuic5 filename.ui –o filename.py ‘ 

• Multiple Python scripts have been developed using PyEpics channel for RF commissioning. GUI 
framework has been also developed using PyQt library from Python.

• ‘FRIB RF Expert’ user interface application has been developed using Qt Designer and converted to 
Python files using ‘pyuic’ module. This generated Python file serves as main file in application. All 
developed Python scripts for RF commissioning are nested under this main file. 

Linac System Type No. of Cryo-
module

No. of 
Cavities

Linac
Segment 1 CA 3 12

Linac
Segment 1 CB 11 88

Folding 
Segment 1 CH 1 4

Linac
Segment 2 CC 12 72

Linac
Segment 2 CD 12 96

Folding 
Segment 2 CG 1 4

Linac
Segment 3 CD 6 48

• This application let users perform mass action to 
apply to multiple LLRF and amplifier systems

• System: Selection based on cavity number, 
cryomodule number, system type or linac
segment type. Script searches for keyword in 
database where all device names for LLRF 
controller and Amplifier are stored

• Action: Options to turn On/ Off, clear/ reset 
interlocks for LLRF controller and amplifier

• PV: Manually input PV name and Value

• Initialize LLRF: Helpful to setup parameters such 
as cavity type, attenuation, interlocks, control 
parameters etc. to initial values before running RF 
for first time

• Check Readbacks: Helpful to make sure all set-
points and readbacks match and there is no 
discrepancy in values

• MPS-LLRF test: Useful to run test between LLRF 
controller and Machine Protection System (MPS)

• Once any combination of system and action are 
selected, it shows a pop-up message to verify 
user actions

• Output window shows device names, PV names 
and values it has changed

• Python script is an easy way to prototype any 
state machine quickly and test the logic

• Once developed and tested, script’s logic can be 
transferred to state-notation language and 
implement on IOC driver 

• To provide most channel access security, it is 
recommended to implement state machines on 
IOC driver. 

RF Amplitude Amplitude 
Set-point Phase Tuner

Stage 1 ON Open Initial SEL OFF

Stage 2 ON Open Initial SEL ON

Stage 2 ON Open Initial Open ON

Stage 2 ON Close Initial Open ON

Stage 2 ON Close Initial Open ON

Stage 2 ON Close Final Open ON

QWR Cavity Turn On Sequence

• For amplitude and phase regulation, the LLRF controller adopts the active disturbance rejection control 
(ADRC) algorithm

• Before locking cavity to desired amplitude and phase, it goes through different stages

• Python script was initially developed to automatically turn on QWR cavities. After testing it on multiple 
cavities and cryomodules, it was transitioned to state-notation language and implemented on IOC driver 

Future Work

• Future work involves transitioning this application to state-notation language and implement on IOC 
driver to add channel access security 


