Paper | Title | Page |
---|---|---|
TUPLE05 | Optical System for Observation of FRIB Target | 570 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Facility for Rare Isotope Beams (FRIB) is a next-generation rare-isotope research facility under construction at Michigan State University (MSU). FRIB will produce rare-isotope beams of unprecedented intensities by impinging a 400 kW heavy-ion beam on a production target and by collecting and purifying the rare isotopes of interest with a fragment separator. A thermal imaging system (TIS) has been developed to monitor the beam spot on the production target. The main features and characteristics of optical system is presented. The prototype of optical system has been tested. |
||
![]() |
Poster TUPLE05 [1.840 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE05 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 06 November 2020 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLH09 | FRIB Driver Linac Integration to be ready for Phased Beam Commissioning | 823 |
|
||
Funding: Work supported by the U.S. Department of Energy (DOE) Office of Science under Cooperative Agreement DE-SC0000661 The driver linac for Facility for Rare Isotope Beams (FRIB) will accelerate all stable ion beams from proton to uranium beyond 200 MeV/u with beam powers up to 400 kW. The linac now consists of 104 superconducting quarter-wave resonators (QWR), which is the world largest number of low-beta SRF cavities operating at an accelerator facility. The first 3 QWR cryomodules (CM) (β = 0.041) were successfully integrated with cryogenics and other support systems for the 2nd Accelerator Readiness Review (ARR). The 3rd ARR scope that includes 11 QWR CM (β=0.085) and 1 QWR matching CM (β=0.085) was commissioned on schedule by January 2019, and then we met the Key Performance Parameters (KPP), accelerating Ar and Kr > 16 MeV/u at this stage, in a week upon the ARR authorization. We examine a variety of key factors to the successful commissioning, such as component testing prior to system integration, assessment steps of system/device readiness, and phased commissioning. This paper also reports on the integration process of the β=0.085 CMs including the test results, and the current progress on β=0.29 and 0.53 CMs in preparation for the upcoming 4th ARR. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH09 | |
About • | paper received ※ 02 September 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |