Paper | Title | Page |
---|---|---|
MOZBA2 | Operational Experience with Superconducting Undulators at APS | 57 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. APS has been developing superconducting undulators for over a decade. Presently, two planar and one helical device are in operation in the APS storage ring, and a number of devices will be installed in the APS Upgrade ring. All superconducting devices perform with very high reliability and have very minor effect on the storage ring operation. To achieve this, a number of storage ring modifications had to be done, such as introduction of the beam abort system to eliminate device quenches during beam dumps, and lattice and orbit modifications to allow for installation of the small horizontal aperture helical device with magnet coils in the plane of synchrotron radiation. |
||
![]() |
Slides MOZBA2 [3.424 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBA2 | |
About • | paper received ※ 02 September 2019 paper accepted ※ 19 November 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPLM14 | Studies of Beam Dumps in Candidate Horizontal Collimator Materials for the Advanced Photon Source Upgrade Storage Ring | 128 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 We present the results of experiments intended to show the effects of beam dumps on candidate collimator materials for the Advanced Photon Source Upgrade (APS-U) storage ring (SR). Due to small transverse electron beam sizes, whole beam loss events are expected to yield dose levels in excess of 10 MGy in beam-facing components, pushing irradiated regions into a hydrodynamic regime. Whole beam aborts have characteristic time scales ranging from 100s of ps to 10s of microseconds which are either much shorter than or roughly equal to thermal diffusion times. Aluminum and titanium alloy test pieces are each exposed to a series of beam aborts of varying fill pattern and charge. Simulations suggest the high energy/power densities are likely to lead to phase transitions and damage in any material initially encountered by the beam. We describe measurements used to characterize the beam aborts and compare the results with those from the static particle-matter interaction code, MARS; we also plan to explore wakefield effects. Beam dynamics modeling, done with elegant is discussed in a companion paper at this conference. The goal of this work is to guide the design of APS-U SR collimators. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM14 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPLM21 | Circuit Model Analysis for High Charge in the APS Particle Accumulator Ring | 151 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source (APS) particle accumulator ring (PAR) was designed to accumulate linac pulses into a single bunch with a fundamental rf system, and longitudinally compress the beam with a harmonic rf system prior to injection into the booster. For APS Upgrade, the injectors will need to supply full-current bunch replacement with high single-bunch charge for swap-out in the new storage ring. Significant bunch lengthening, energy spread, and synchrotron sidebands are observed in PAR at high charge. Lower-charge dynamics are dominated by potential well distortion, while higher-charge dynamics appear to be dominated by microwave instability. Before a numerical impedance model was available, a simple circuit model was developed by fitting the measured bunch distributions to the Haissinski equation. Energy scaling was then used to predict the beam energy sufficient to raise the instability threshold to 18-20 nC. With the beam in a linear or nearly linear regime, higher harmonic radio frequency (rf) gap voltage can be used to reduce the bunch length at high charge and better match the booster acceptance. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM21 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLM04 | Precision Cavity Higher-Order Mode Tuning Scheme for Stabilizing the Stored Beam in the Advanced Photon Source Upgrade | 670 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 The Advanced Photon Source Upgrade will suffer longitudinal multi-bunch instability because of the presence of several monopole higher-order mode (HOMs) of the 12 352-MHz rf cavities. Even with a feedback system, it would be good to mitigate any driving terms with conventional means such as tuning HOM frequencies with temperature. However the latter is problematic because there will be 90 or so HOMs that are potentially harmful. A scheme is developed, utilizing the measured spectrum of HOMs, to find the best temperature setting for each cavity. We present measurements of 30 or so HOMs, and a thermal model of HOM frequencies using cavity wall power and cooling water temperature as inputs to maintain the optimum tuning condition with sufficient accuracy. The newly acquired Dimtel iGp12 processor box is central to the HOM frequency measurements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM04 | |
About • | paper received ※ 29 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |