Paper | Title | Page |
---|---|---|
TUPLM13 | Two-Energy Storage-Ring Electron Cooler for Relativistic Ion Beams | 399 |
SUPLM07 | use link to see paper's listing under its alternate paper code | |
|
||
An electron beam based cooling system for the ion beam is one of the commonly used approaches. The proposed two’energy storage-ring electron cooler consists of damping and cooling sections at markedly different energies connected by an energy recovering superconducting RF structure. The parameters in the cooling and damping sections are adjusted for optimum cooling of a stored ion beam and for optimum damping of the electron beam respectively. This paper briefly describes a two cavities model along with a third cavity model to accelerate and decelerate the electron beam in two energy storage ring. Based on our assumed value of equilibrium emittance shows that these models give a bunch length of the order of cm and energy spread of the order of 〖10〗-5 in the cooling section which are required parameters for the better cooling. Numerical calculations along with elegant simulation are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM13 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 03 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOOHC2 | The US Electron Ion Collider Accelerator Designs | 1 |
|
||
With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D. | ||
![]() |
Slides MOOHC2 [14.774 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2 | |
About • | paper received ※ 29 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOZBB5 | Magnetized Electron Source for JLEIC Cooler | 83 |
WEPLO22 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and supported by Laboratory Directed Research and Development funding. Magnetized bunched-beam electron cooling is a critical part of the Jefferson Lab Electron Ion Collider (JLEIC). Strong cooling of ion beams will be accomplished inside a cooling solenoid where the ions co-propagate with an electron beam generated from a source immersed in magnetic field. This contribution describes the production and characterization of magnetized electron beam using a compact 300 kV DC high voltage photogun and bialkali-antimonide photocathodes. Beam magnetization was studied using a diagnostic beamline that includes viewer screens for measuring the shearing angle of the electron beamlet passing through a narrow upstream slit. Correlated beam emittance with magnetic field at the photocathode was measured for various laser spot sizes. Measurements of photocathode lifetime were carried out at different magnetized electron beam currents up to 28 mA and high bunch charge up to 0.7 nano-Coulomb was demonstrated. |
||
![]() |
Slides MOZBB5 [9.236 MB] | |
![]() |
Poster MOZBB5 [1.564 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOZBB5 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 01 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUZBB4 | Space Charge Study of the Jefferson Lab Magnetized Electron Beam | 360 |
SUPLM23 | use link to see paper's listing under its alternate paper code | |
|
||
Magnetized electron cooling could result in high luminosity at the proposed Jefferson Lab Electron-Ion Collider (JLEIC). In order to increase the cooling efficiency, a bunched electron beam with high bunch charge and high repetition rate is required. We generated magnetized electron beams with high bunch charge using a new compact DC high voltage photo-gun biased at -300 kV with alkali-antimonide photocathode and a commercial ultrafast laser. This contribution explores how magnetization affects space charge dominated beams as a function of magnetic field strength, gun high voltage, laser pulse width, and laser spot size. | ||
![]() |
Slides TUZBB4 [12.582 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUZBB4 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPLM63 | Development of a Secondary Sn Source for Nb3Sn Coating of Half-Wave Coaxial Resonator | 735 |
SUPLS09 | use link to see paper's listing under its alternate paper code | |
|
||
Superconducting thin films have the potential of reducing the cost of particle accelerators. Among the potential materials, Nb3Sn has a higher critical temperature and higher critical field compared to niobium. Sn vapor diffusion method is the preferred technique to coat niobium cavities. Although there are several thin-film-coated basic cavity models that are tested at their specific frequencies, the Half-wave resonator could provide us data across frequencies of interest for particle accelerators. With its advanced geometry, increased area, increased number of ports and hard to reach areas, the half-wave resonator needs a different coating approach, in particular, a development of a secondary Sn source. We are commissioning a secondary Sn source in the coating system and expand the current coating system at JLab to coat complex cavity models. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLM63 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 06 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |