Author: Cogan, S.
Paper Title Page
TUPLM29 Current Status and Prospects of FRIB Machine Protection System 437
TUPLM28   use link to see paper's listing under its alternate paper code  
 
  • Z. Li, D. Chabot, S. Cogan, S.M. Lidia
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) is designed to accelerate beam up to 400 kW power with kinetic energy ≥ 200 MeV/u. Fast response of the machine protection system is critical for FRIB beam commissioning and operation to prevent damage to equipment. The beam commissioning of the first linac segment, including fifteen cryomodules, has been completed. Four ion species were accelerated to a beam energy of 20.3 MeV/u with duty factors from 0.05 percent to continuous wave. The peak beam current exceeded 10 percent of the final requirements. This paper summarizes the status of the machine protection system deployed in the production, Machine interlock response time of ~8 μs was achieved. Incentives for future development include being able to achieve smooth and reliable beam operation, faster machine protection response time and real time data analysis of failure mode.
 
poster icon Poster TUPLM29 [2.067 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM29  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLE07 Overview of FRIB’s Diagnostics Controls System 576
 
  • B.S. Martins, S. Cogan, M.G. Konrad, S.M. Lidia, D.O. Omitto, P.J. Rodriguez
    FRIB, East Lansing, Michigan, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
In this work we will present an overview of the diagnostics systems put in place by FRIB’s Beam Instrumentation and Measurements department. We will focus on the controls and integration aspects for different kinds of equipment, such as pico ammeters and motor controllers, used to drive and readback the devices deployed on the beamline, such as profile monitors, Faraday cups, etc. In particular, we will discuss the controls software used in our deployment and how we make use of continuous integration and deployment systems to automate certain tasks and make the controls system in production more robust.
 
poster icon Poster TUPLE07 [2.302 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLE07  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPLH04 Beam Envelope Reconstruction for FRIB-FS1 Transport Line Using Beam Position Monitors 810
 
  • T. Yoshimoto, S. Cogan, J.L. Crisp, K. Fukushima, S.M. Lidia, T. Maruta, P.N. Ostroumov, A.S. Plastun, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The Facility for Rare Isotope Beam (FRIB) includes a heavy ion superconducting (SC) linac. Recently we completed beam commissioning of the Linac Segment 1 (LS1) and 45° bend section of the Folding Segment 1 (FS1). Four ion species, 40Ar9+, 20Ne6+, 86Kr17+ and 129Xe26+ were successfully accelerated to a beam energy of 20.3 MeV/u. We explored the possibility of non-invasive beam diagnostics for online beam envelope monitoring based on beam quadrupole moments derived from Beam Position Monitors (BPMs)*. In future operations, various ion beam species will be accelerated and minimization of beam tuning time is critical. To address this requirement, it is beneficial to use BPMs to obtain beam Twiss parameters instead of wire scanners. This paper reports the results of BPM-based beam Twiss parameters evolution in the FS1.
* R. E. Shafer, "Laser Diagnostic for High Current H beams", Proc. 1998 Beam Instrumentation Workshop (Stanford). A.I.P. Conf. Proceedings, (451), 191.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH04  
About • paper received ※ 27 August 2019       paper accepted ※ 16 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBA3 Status of Beam Commissioning in FRIB Driver Linac 951
 
  • T. Maruta, S. Cogan, K. Fukushima, M. Ikegami, S.H. Kim, S.M. Lidia, G. Machicoane, F. Marti, D.G. Morris, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, J. Wei, T. Xu, T. Yoshimoto, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
The beam commissioning of linac segment 1 (LS1) composed of fifteen cryomodules consisting of total 104 superconducting (SC) resonators and 36 SC solenoids was successfully completed. Four ion beam species, Ne, Ar, Kr and Xe were successfully accelerated up to 20.3 MeV/u. The FRIB driver linac in its current configuration became the highest energy continuous wave hadron linac. We will report a detailed study of beam dynamics in the LS1 prior to and after stripping with a carbon foil.
 
slides icon Slides THZBA3 [11.377 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBA3  
About • paper received ※ 04 September 2019       paper accepted ※ 20 November 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THZBB4 Beam Loss in the First Segment of the FRIB Linac 965
TUPLE17   use link to see paper's listing under its alternate paper code  
 
  • R. Shane, S. Cogan, S.M. Lidia, T. Maruta
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
Beam loss in accelerators is an unavoidable and often unwanted reality, but it is not without its use. Information from beam loss can be leveraged to optimize the tune and improve beam quality, in addition to monitoring for machine fault and failure conditions. The folded geometry at the Facility for Rare Isotope Beams (FRIB) presents a unique challenge in the detection of radiative losses, resulting in the introduction of non-traditional measurement schemes. In addition to neutron detectors and pressurized ionization chambers, FRIB will utilize halo ring monitors, fast thermometry within the cryomodules, and differential beam-current measurements. This paper will present an analysis of beam-loss measurements from commissioning the first segment of the FRIB accelerator, and a discussion of ways to evaluate and monitor the health of the beam loss monitoring system.
 
slides icon Slides THZBB4 [2.477 MB]  
poster icon Poster THZBB4 [0.584 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THZBB4  
About • paper received ※ 04 September 2019       paper accepted ※ 17 November 2020       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)