Author: Blednykh, A.
Paper Title Page
MOOHC2 The US Electron Ion Collider Accelerator Designs 1
 
  • A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Bruker, A. Camsonne, E. Daly, P. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, J.M. Grames, J. Guo, F.E. Hannon, L. Harwood, S. Henderson, H. Huang, A. Hutton, K. Jordan, D.H. Kashy, A.J. Kimber, G.A. Krafft, R. Lassiter, R. Li, F. Lin, M.A. Mamun, F. Marhauser, R. McKeown, T.J. Michalski, V.S. Morozov, P. Nadel-Turonski, E.A. Nissen, G.-T. Park, H. Park, M. Poelker, T. Powers, R. Rajput-Ghoshal, R.A. Rimmer, Y. Roblin, D. Romanov, P. Rossi, T. Satogata, M.F. Spata, R. Suleiman, A.V. Sy, C. Tennant, H. Wang, S. Wang, C. Weiss, M. Wiseman, W. Wittmer, R. Yoshida, H. Zhang, S. Zhang, Y. Zhang, Z.W. Zhao
    JLab, Newport News, Virginia, USA
  • D.T. Abell, D.L. Bruhwiler, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, A. Kiselev, V. Litvinenko, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, E. Wang, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • G.I. Bell, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • Y. Cai, Y.M. Nosochkov, A. Novokhatski, G. Stupakov, M.K. Sullivan, C.-Y. Tsai
    SLAC, Menlo Park, California, USA
  • Z.A. Conway, M.P. Kelly, B. Mustapha, U. Wienands, A. Zholents
    ANL, Lemont, Illinois, USA
  • S.U. De Silva, J.R. Delayen, H. Huang, C. Hyde, S. Sosa, B. Terzić
    ODU, Norfolk, Virginia, USA
  • K.E. Deitrick, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • B. Erdelyi, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Fox
    Stanford University, Stanford, California, USA
  • J. Gerity, T.L. Mann, P.M. McIntyre, N. Pogue, A. Sattarov
    Texas A&M University, College Station, USA
  • E. Gianfelice-Wendt, S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • Y. Hao, P.N. Ostroumov, A.S. Plastun, R.C. York
    FRIB, East Lansing, Michigan, USA
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
  • J. Qiang, G.L. Sabbi
    LBNL, Berkeley, California, USA
  • D. Teytelman
    Dimtel, Redwood City, California, USA
  • R.C. York
    NSCL, East Lansing, Michigan, USA
 
  With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.  
slides icon Slides MOOHC2 [14.774 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOOHC2  
About • paper received ※ 29 August 2019       paper accepted ※ 04 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYBA4 eRHIC Design Update 18
TUPLO11   use link to see paper's listing under its alternate paper code  
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, S. Verdú-Andrés, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The future electron-ion collider (EIC) aims at an electron-proton luminosity of 1033 to 1034 cm-2 sec-1 and a center-of-mass energy range from 20 to 140 GeV. The eRHIC design has been continuously evolving over a couple of years and has reached a considerable level of maturity. The concept is generally conservative with very few risk items which are mitigated in various ways.
 
slides icon Slides MOYBA4 [5.466 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOYBA4  
About • paper received ※ 24 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM01 Alternative Injection Schemes to the NSLS-II Using Nonlinear Injection Magnets 91
 
  • R.P. Fliller, III, G. Bassi, A. Blednykh, C. Hetzel, V.V. Smaluk, C.J. Spataro, P. Zuhoski
    BNL, Upton, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The NSLS-II storage ring uses the standard four bump injection scheme to inject beam off axis. BESSY and MAX IV are now using a pulsed multipole magnet as an injection kicker. The injected beam sees a field off axis for injection while the stored beam experiences no field on the magnet axis. The principle advantage of using a pulsed multipole for injection is that the stored beam motion is greatly reduced since the field on axis is negligible. The number of pulsed magnets is reduced from five in the nominal scheme (septum and four bumps) to two or three thereby reducing the possible failure modes. This also eliminates the need to precisely match the pulse shapes of four dipole magnets to achieve minimal stored beam motion outside of the bump. In this paper we discuss two schemes of injecting into the NSLS-II using a pulsed multipole magnet. The first scheme uses a single pulsed multipole located in one cell downstream of the injection septum as the injection kicker. The second scheme uses two pulsed multipoles in the injection straight to perform the injection. We discuss both methods of injection and compare each method.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM01  
About • paper received ※ 27 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLM20 Impedance Considerations for the APS Upgrade 147
 
  • R.R. Lindberg
    ANL, Lemont, Illinois, USA
  • A. Blednykh
    BNL, Upton, New York, USA
 
  Funding: Supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357
The APS-Upgrade is targeting a 42 pm lattice that requires strong magnets and small vacuum chambers. Hence, impedance is of significant concern. We overview recent progress on identifying and modelling vacuum components that are important sources of impedance in the ring, including photon absorbers, BPMs, and flange joints. We also show how these impact collective dynamics in the APS-U lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM20  
About • paper received ※ 27 August 2019       paper accepted ※ 01 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLM36 Temperature Measurements of the NSLS-II Vacuum Components 443
 
  • A. Blednykh, G. Bassi, C. Hetzel, B.N. Kosciuk, D. Padrazo Jr, T.V. Shaftan, V.V. Smaluk, G.M. Wang
    BNL, Upton, New York, USA
 
  This paper is dedicated to the analysis of our recent experience from ramp-up of operating current at NSLS-II from 25 mA at the end of commissioning in 2014 to 475 mA achieved in studies today. To approach the design level of the ring intensity we had to solve major problems in overheating of the chamber components. Since the beginning of the NSLS-II commissioning, the temperature of the vacuum components has been monitored by the Resistance Temperature Detectors located predominantly outside of the vacuum chamber and attached to the chamber body. A couple of vacuum components were designed with the possibility for internal temperature measurements under the vacuum as diagnostic assemblies. Temperature map helps us to control overheating of the vacuum components around the ring especially during the current ramp-up. The average current of 475mA has been achieved with two main 500MHz RF cavities and w/o any harmonic cavities. In this paper we discuss the heating results for a 15ps bunch length (at low current) of the following vacuum components: Large Aperture BPM, Small Aperture BPM, Bellows, Flanges, Ceramics Chambers and Stripline Kickers.  
poster icon Poster TUPLM36 [3.696 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM36  
About • paper received ※ 28 August 2019       paper accepted ※ 05 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)