Author: Xiao, A.
Paper Title Page
TUPMF017 Transport Line Design and Injection Configuration Optimization for the Advanced Photon Source Upgrade 1287
 
  • A. Xiao, M. Borland
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
On-axis swap-out injection was chosen for the Advanced Photon Source Upgrade (APS-U) to allow pushing the beam emittance to an extremely low value. The injection section configuration was optimized within a multi-dimensional parameter space and made consistent with up-to-date technical developments. The booster-to-storage ring (BTS) transport line was designed to bring the electron beam from the existing Booster to the new storage ring (SR). Due to various limitations, this new BTS line is twisted both horizontally and vertically when approaching the injection point, which introduces challenges in both geometrical and optical matching. This paper presents our simple solution to these issues. The coupling effect caused by the twisted BTS line is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF018 Simulation Studies of the Helical Superconducting Undulator Installed at APS 1290
 
  • A. Xiao, V. Sajaev, Y.P. Sun
    ANL, Argonne, Illinois, USA
 
  A multi-year project at APS has resulted in construction of a helical superconducting undulator (HSCU) for installation in the ring. Before installation, simulation studies were done to ensure that APS performance will not be compromised. This paper describes the method used for calculating the HSCU's perturbation effects and the simulation results for both calculated and measured field map.
Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK004 Using Decoherence to Prevent Damage to the Swap-Out Dump for the APS Upgrade 1494
 
  • M. Borland, J.C. Dooling, R.R. Lindberg, V. Sajaev, A. Xiao
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is pursuing an upgrade of the storage ring to a hybrid seven-bend-achromat* design, which will operate in swap-out mode. The ultra-low emittance (about 30 pm in both planes) combined with the desire to provide high charge (15 nC) in individual bunches, entails very high energy density in the beam. Simple estimates, confirmed by simulation, indicate that interaction of such a bunch with the dump material will result in localized melting. Over time, it is possible that the beam would drill through the dump and vent the ring vacuum. This would seem to prevent extraction and dumping of bunches as part of swap out, and also suggests that transferring of bunches out of the ring carries significant risk. We devised an idea for using a pre-kicker to cause decoherence of the target bunch emittances, making it safe to extract. Simulations show that the concept works very well.
*L. Farvacque et al., IPAC13, 79 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBD1 The Upgrade of the Advanced Photon Source 2872
 
  • M. Borland, M. Abliz, N.D. Arnold, T.G. Berenc, J.M. Byrd, J.R. Calvey, J.A. Carter, J. Carwardine, H. Cease, Z.A. Conway, G. Decker, J.C. Dooling, L. Emery, J.D. Fuerst, K.C. Harkay, A.K. Jain, M.S. Jaski, P.S. Kallakuri, M.P. Kelly, S.H. Kim, R.M. Lill, R.R. Lindberg, J. Liu, Z. Liu, J. Nudell, C.A. Preissner, V. Sajaev, N. Sereno, X. Sun, Y.P. Sun, S. Veseli, J. Wang, U. Wienands, A. Xiao, C. Yao
    ANL, Argonne, Illinois, USA
  • A. Blednykh
    BNL, Upton, Long Island, New York, USA
 
  After decades of successful operation as a 7-GeV synchrotron radiation source, the Advanced Photon Source is pursing a major upgrade that involves replacement of the storage ring with an ultra-low emittance multi-bend achromat design. Using a seven-bend hybrid multi-bend achromat with reverse bending magnets gives a natural emittance of 42 pm operated at 6 GeV. The x-ray brightness is predicted to increase by more than two orders of magnitude. Challenges are many, but appear manageable based on thorough simulation and in light of the experience gained from world-wide operation of 3\text{rd}-generation light sources. The upgraded ring will operate in swap-out mode, which has allowed pushing the performance beyond the limits imposed by conventional operation.  
slides icon Slides THXGBD1 [14.684 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)