Author: Vogt, M.
Paper Title Page
TUPMF076 Temporal X-ray Reconstruction Using Temporal and Spectral Measurements 1440
SUSPF010   use link to see paper's listing under its alternate paper code  
 
  • F. Christie, J. Rönsch-Schulenburg, M. Vogt
    DESY, Hamburg, Germany
  • Y. Ding, Z. Huang, J. Krzywinski, A.A. Lutman, T.J. Maxwell, D.F. Ratner
    SLAC, Menlo Park, California, USA
  • V. A. Jhalani
    CALTECH, Pasadena, California, USA
 
  Transverse deflecting structures (TDS) are widely used in accelerator physics to measure the longitudinal density of particle bunches. When used in combination with a dispersive section, the whole longitudinal phase space density can be imaged. At the Linac Coherent Light Source (LCLS), the installation of such a device downstream of the undulators enables the reconstruction of the X-ray temporal intensity profile by comparing longitudinal phase space distributions with lasing on and lasing off*. However, the resolution of this TDS is limited to around 1 fs rms (root mean square), and therefore, in most cases, it is not possible to resolve single self-amplified spontaneous emission (SASE) spikes within one photon pulse. By combining the intensity spectrum from a high resolution photon spectrometer** and the temporal structure from the TDS, the overall resolution is enhanced, thus allowing the observation of temporal, single SASE spikes. The combined data from the spectrometer and the TDS is analyzed using an iterative algorithm to obtain the actual intensity profile. In this paper, we present the reconstruction algorithm as well as analyzed data obtained from simulations which shows the reliability of this method. Real data will be published at a later stage.
*Y. Ding et al., Phys. Rev. ST AB, 14, 120701, 2011.
**D. Zhu et al., Appl. Phys. Lett., 101, 034103, 2012.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF089 Possible Upgrades of FLASH –- A View from the Accelerator-Perspective 1477
 
  • M. Vogt, B. Faatz, K. Honkavaara, J. Rönsch-Schulenburg, S. Schreiber, J. Zemella
    DESY, Hamburg, Germany
 
  Recently FLASH (Free electron LASer in Hamburg) at DESY has been granted funding for a refurbishment project covering among others the replacement of two old SRF modules, an upgrade of the injector lasers and an upgrade of parts of the electron beam diagnostics. In addition we are proposing several possible upgrades and new features for the injector and the drive linac as well as in the undulator beamlines. Here we present options which are in our opinion technically feasible and at the same time operationally manageable.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF090 Status of the Superconducting Soft X-Ray Free-Electron Laser FLASH at DESY 1481
 
  • M. Vogt, K. Honkavaara, M. Kuhlmann, J. Rönsch-Schulenburg, S. Schreiber, R. Treusch
    DESY, Hamburg, Germany
 
  FLASH, the free-electron laser (FEL) user facility at DESY, has delivered high brilliance VUV and soft x-ray FEL radiation for photon experiments since summer 2005. In 2014 and 2015 a second beamline, FLASH2, has been commissioned in parallel to user operation at FLASH1. FLASH's superconducting linac can produce bunch trains of up to 800 bunches within a 0.8 ms RF flat top at a repetition rate of 10 Hz. In standard operation during 2017 FLASH supplied up to 500 bunches in two bunch trains with independent fill patterns and compression schemes. Since mid 2017 initial commissioning of a third experimental beamline, accommodating the FLASHForward plasma wakefield acceleration experiment, has started. We report on the highlights of the FLASH operation in 2017/2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK138 Development of Efficient Tree-Based Computation Methods for the Simulation of Beam Dynamics in Sparsely Populated Phase Spaces 3569
 
  • Ph. Amstutz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • M. Vogt
    DESY, Hamburg, Germany
 
  Collective instabilities pose a major threat to the quality of the high brightness electron beams needed for the operation of a free electron laser. Multi-stage bunch compression schemes have been identified as a possible source of such an instability. The dispersive sections in these compressors translate energy inhomogeneities within the bunch into longitudinal charge density inhomogeneities. In conjunction with a collective force driving locally density-dependent energy modulations this leads to intricate longitudinal beam dynamics. As a consequence of the thin shape those bunches form in the longitudinal phase space, efficient simulation of such systems is not straight forward. At high resolutions, the numerical representation of the phase space density on a uniform grid is too wasteful, due to the large unpopulated phase space regions. In this contribution we present advances made in the development of a simulation code that addresses the problem of sparsely populated phase spaces by means of quadtree domain decomposition. A focus lies on the explanation of the underlying tree data structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK138  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL068 Status of the Polarix-TDS Project 3808
 
  • P. Craievich, M. Bopp, H.-H. Braun, R. Ganter, T. Kleeb, M. Pedrozzi, E. Prat, S. Reiche, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • R.W. Aßmann, F. Christie, R.T.P. D'Arcy, U. Dorda, M. Foese, P. González Caminal, M. Hoffmann, M. Hüning, R. Jonas, O. Krebs, S. Lederer, V. Libov, B. Marchetti, D. Marx, J. Osterhoff, F. Poblotzki, M. Reukauff, H. Schlarb, S. Schreiber, G. Tews, M. Vogt, A. Wagner
    DESY, Hamburg, Germany
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W. Wuensch
    CERN, Geneva, Switzerland
 
  A collaboration between DESY, PSI and CERN has been established to develop and build an advanced modular X-band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. This innovative CERN design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field. Therefore, the high-precision tuning-free production process developed at PSI for the C-band and X-band accelerating structures will be used for the manufacturing. We summarize in this paper the status of the production of the prototype and the waveguide networks foreseen in the different facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)