Author: Koser, D.
Paper Title Page
MOPML017 Status and Development of the MYRRHA Injector 432
 
  • D. Mäder, H. Höltermann, D. Koser, B. Koubek, K. Kümpel, P. Müller, U. Ratzinger, M. Schwarz, W. Schweizer
    BEVATECH, Frankfurt, Germany
  • C. Angulo, J. Belmans, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon, D. Vandeplassche
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • M. Busch, H. Hähnel, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  The MYRRHA project aims at coupling a cw 600 MeV, 4 mA proton linac with a sub-critical reactor as the very first prototype nuclear reactor to be driven by a particle accelerator (ADS). Among several applications, MYRRHA main objective is to demonstrate the principle of partitioning and transmutation (P&T) as a viable solution to drastically reduce the radiotoxicity of long-life nuclear waste. For this purpose, the linac needs an unprecedented level of reliability in terms of allowable beam trips. The normal conducting injector delivers 16.6 MeV protons to the superconducting main linac. The first section of the injector (up to 5.9 MeV) consists of an ECR source, a 4-Rod-RFQ and a rebunching line followed by 7 individual CH-type cavities. This entire section will be set up and operated by SCK·CEN in Louvain-la-Neuve, Belgium, for ample performance and reliability testing. The first CH cavity has been sent for power tests to IAP Frankfurt, Germany. The most recent status of all cavities, couplers and the beam diagnostics of the MYRRHA injector is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF089 Initial Measurements on a New 108 MHz 4-Rod CW RFQ Prototype for the HLI at GSI 946
 
  • D. Koser, K. Kümpel, H. Podlech
    IAP, Frankfurt am Main, Germany
  • P. Gerhard
    GSI, Darmstadt, Germany
  • O.K. Kester
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA and HIC for FAIR
The High Charge State Injector (HLI) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany, is one of the two injector linacs for the Universal Linear Accelerator (UNILAC) and is also planned to serve as dedicated injector for a proposed superconducting CW linac for heavy element research. Within the scope of an intended CW upgrade of the HLI front end, a replacement for the existing 4-rod RFQ is desirable since its stable operation and performance is severely impeded by mechanical vibrations of the electrodes and a high thermal sensitivity*. With the aim of suppressing mechanical vibrations and providing efficient cooling considering high power CW operation, a completely new and improved 4-rod design was developed** with a focus on structural mechanical simulations using ANSYS. In order to validate the simulated RF performance, thermal behavior and structural mechanical characteristics, a 6-stem prototype was manufactured***. Initial low power RF measurements and basic piezo actuated mechanical investigations were done and the anticipated properties could be confirmed prior to planned high power RF tests and further mechanical vibration studies.
* D. Koser et al., THPIK021, Proc. of IPAC2017
** D. Koser et al., MOPOY020, Proc. of IPAC2016
*** D. Koser et al., TUPLR057, Proc. of LINAC2016
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF090 Measurements of the MYRRHA-RFQ at the IAP Frankfurt 949
 
  • K. Kümpel, D. Koser, S. Lamprecht, N.F. Petry, H. Podlech, A. Schempp, D. Strecker
    IAP, Frankfurt am Main, Germany
  • A. Bechtold
    NTG Neue Technologien GmbH & Co KG, Gelnhausen, Germany
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE)
The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project is a planned accelerator driven system (ADS) which aims to demonstrate the feasibility of large scale transmutation. The first RF structure of the 600 MeV MYRRHA Linac will be a 176.1 MHz 4-Rod RFQ that will accelerate up to 4 mA protons in cw operation from 30 keV up to 1.5 MeV. The voltage along the approximately 4 m long electrodes has been chosen to 44 kV which limits the RF losses to about 25 kW/m. During the design of the structure a new method of dipole compensation has been applied. This paper describes the status of the RFQ and shows the results of the measurements done at IAP Frankfurt such as dipole and flatness measurement, vacuum tests and power tests up to 11 kW.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)