Paper | Title | Page |
---|---|---|
WEPMF084 | Design, Prototyping Activities and Beam Irradiation Test for the New nTOF Neutron Spallation Target | 2582 |
|
||
A third-generation neutron spallation target for the neutron time-of-flight facility at CERN (nTOF) is currently undergoing the design and prototyping stage. The new design aims at improving reliability, increasing beam intensity on target and avoiding issues encountered in the current generation target, in particular the contamination of the cooling system water with radioactive spallation products coming from washing out lead. After a preliminary design and an initial prototyping stage*, a baseline solution has been defined consisting in a pure lead target core contained in a Ti-6Al-4V cladding and embedded in a massive Pb block. A backup solution has also been defined, consisting in a Ta-cladded W core embedded in a Pb block. Both solutions are currently undergoing the detailed design stage. This contribution details the prototyping activity, the robustness studies for accidental scenarios and the design of a beam irradiation test on prototypes of the target core.
R. Esposito et al., "Design of the new CERN nTOF neutron spallation target: R&D and prototyping activities," in Proc. of IPAC'17, Copenhagen, May 2017. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF084 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMG002 | Beam Dump Facility Target: Design Status and Beam Tests in 2018 | 2604 |
|
||
The Beam Dump Facility (BDF) Project, currently in its design phase, is a proposed general-purpose fixed target facility at CERN, dedicated to the Search for Hidden Particles (SHiP) experiment in its initial phase. At the core of the installation resides the target/dump assembly, whose aim is to fully absorb the high intensity 400 GeV/c SPS beam and produce charmed mesons. In addition to high thermo-mechanical loads, the most challenging aspects of the proposed installation lie in very high energy and power density deposition that are reached during operation. In order to validate the design of the BDF target, a scaled prototype is going to be tested during 2018 in the North Area at CERN, upstream the existing beryllium primary targets. The prototype testing under representative beam scenarios will allow having an insight of the material response in an unprecedented regime. Online monitoring and an extensive Post Irradiation Experimental (PIE) campaign are foreseen. The current contribution will detail the design and handling aspects of the innovative Target Complex as well as the design of the BDF target/dump core and the design and construction of the prototype target assembly. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG002 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMG003 | Analysis and Operational Feedback of the New High-Energy Beam Dump in the CERN SPS | 2608 |
|
||
The CERN Super Proton Synchrotron (SPS) high-energy internal dump (TIDVG) is used to intercept beam dumps from 102.2 to 450 GeV. An inspection in 2013 revealed significant beam induced damage to the aluminium absorbing block, resulting in operational limitations to minimize the risk of reproducing this phenomenon. Additionally, in 2016 a vacuum leak was detected in the dump assembly, which imposed further limitations, i.e., a reduction of the beam intensity that could be dumped. In the winter stop of 2016-2017, a new version of the TIDVG (featuring several design modifications) was installed. This paper analyses the performance of the dump observed during the commissioning period and subsequent operation in 2017 of the most recent installed version of the TIDVG. The temperature measurements recorded during this time were used to benchmark numerical models that allow predicting the performance of the dump under different conditions. After several iterations, a good agreement between simulations and real measurements was obtained; resulting in numerical models that can produce reliable results for this and other devices with similar design. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG003 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMG004 | Design of the Future High Energy Beam Dump for the CERN SPS | 2612 |
|
||
The future CERN Super Proton Synchrotron (SPS) internal dump (Target Internal Dump Vertical Graphite, known as TIDVG#5), to be installed during CERN's Long Shutdown 2 (2019-2020), will be required to intercept beam dumps from 26 to 450 GeV, with increased intensity and repetition rates with respect to its predecessor (TIDVG#4). The beam power to be managed by the dump will increase by approximately a factor of four; resulting in new challenges in terms of design in order to fulfil the highly demanding specification, which is based on guaranteeing a good performance of the machine with little or no limitations imposed by this device. This paper presents the proposed design, including material selection, manufacturing techniques and thermo-mechanical simulations under different operational scenarios expected during the lifetime of the device. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG004 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |