Paper | Title | Page |
---|---|---|
MOPML053 | Mu*STAR Accelerator-Driven Subcritical Reactors Burning Spent Nuclear Fuel at Light-Water-Reactor Sites | 524 |
|
||
This project will use modeling and simulation tools to optimize many aspects of the Mu*STAR design and begin to explore accident scenarios. At present we have a conceptual design of the accelerator, the reactor, the spallation target, and the fractional distillation to separate volatile fission products. Our GAIN project with ORNL is preparing a design of the Fuel Processing Plant that will convert spent nuclear fuel into the molten-salt fuel for Mu*STAR. This includes all of the nuclear components, but not such things as the turbine and generator, physical plant, control and monitoring systems, etc. We currently have basic simulations of the reactor neutronics, and a start at calculating the fuel evolution. These have used MCNP and ORIGEN, and initial results have been reported1. This project will support the use of additional neutronics and multi-physics codes, enabling a much more thorough analysis of the system. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPML054 | Production and Collection of He-3 and Other Valuable Isotopes using Mu*STAR | 527 |
|
||
We propose an example facility based on GEM*STAR, an accelerator-driven molten-salt-fueled graphite-moderated thermal-spectrum reactor that can operate with different fissile fuels and uses a LiF-BeF2 molten eutectic carrier salt. In the first example, they propose using the 6Li in the LiF carrier to produce more than 2 kg/y of tritium (decaying to 3He with 12.3 year half-life) using a 2.5 MWb superconducting proton linac to drive the subcritical 500 MWt reactor burning surplus plutonium. The collection of other valuable fission-product radioisotopes like 133Xe will also benefit from the high temperature and continuous removal and separation afforded by fractional distillation | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML054 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAG002 | Tunable Q-Factor Gas-Filled RF Cavity | 2064 |
SUSPF092 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795. Fermilab is the main institution to produce the most powerful and wide-spectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gas-filled RF cavity has been proposed. The goal of this measurement is to study a tunable Q-factor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, the measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG002 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAK001 | Intense Neutrino Source Front End Beam Diagnostics System R&D | 2077 |
|
||
Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795. We overview the front end beam diagnostic system R&D to prepare operation of a multi-MW proton beam for intensity frontier Neutrino experiments. One of critical issues is shorter life time of a detector with higher beam intensity due to radiation damage. We show a possible improvement of the existing ion chamber based detector, and a study of a conceptually new radiation-robust detector which is based on a gas-filled RF resonator. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAL051 | Mirascope Residual-Gas Luminescent Beam Profile Monitors | 2291 |
|
||
Muons, Inc. proposes to develop a Residual-Gas Beam Profile Monitor for Transfer Lines with pulse-to-pulse precision of better than 0.1 mm in position and size that will operate over a wide range of proton beam intensities including those needed for multi-MW beams of future facilities. Traditional solid-based beam intercepting instrumentation produces unallowable levels of radiation at high powers. Our alternative approach is to use a low mass residual-gas profile monitor, where ionization electrons are collected along extended magnetic field lines and the gas composi-tion and pressure in the beam pipe are locally controlled to minimize unwanted radiation and to improve resolu-tion. Beam Induced Fluorescence profile monitor with micrascope light collection is proposed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL051 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAL036 | Nb3Sn Thin Films for the Production of Higher Gradient SRF Cavities at Reduced Cost | 3716 |
|
||
High gradient superconducting cavities (SRF) will be needed for future accelerators. The higher gradient can achieve the high energy with fewer cavities. However the accelerating field of niobium cavities is limited by the peak magnetic field on the cavity surface. Cavities coated with Nb3Sn have a significantly larger Hc2 allowing the cavity to achieve a larger gradient. Measurements of Nb3Sn coated cavities have achieved about half the theoretical predicted gradient. It is possible to improve Nb3Sn plated cavity performance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL036 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAL037 | Nano-engineering of Nb3Sn Thin Films to Improve Wire Performance and Reduce Cost | 3720 |
|
||
State-of-the-art Nb3Sn wires have plateaued in the performance of the critical current density Jc. Chemical and geometrical optimization of the wire layout have produced Nb3Sn wires with average Jc(4.2K, 16T) ~ 1,300 A/mm2. A future high energy hadron collider that is being considered to follow the LHC would need larger Jc and be cost effective. The approach to improving the performance of Nb3Sn conductor would be to introduce enhanced flux pinning mechanisms with nano-engineering techniques. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL037 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML009 | Polarized Deuteron Negative Ion Source for Nuclear Physics Applications | 4665 |
|
||
The proposed U.S. Electron-Ion Collider (EIC) provides a unique tool to explore the next frontier in Quantum Chromodynamics, the dependence of hadron structure on the dynamics of gluons and sea quarks. Polarized beams are essential to these studies; understanding of the hadron structure cannot be achieved without knowledge of the spin. The existing EIC concepts utilize both polarized electrons and polarized protons/light ion species to probe the sea quark and gluon distributions. Polarized deuterons provide an especially unique system for study by essentially providing a combination of quark and nuclear physics. We note that there are currently no operational polarized deuteron beam sources in the United States. This polarized deuteron source can serve as a polarized deuteron injector for a future EIC, with additional applications in polarimetry and polarized gas targets for experiments at CEBAF or RHIC and would be very useful for our future facilities. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML009 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |