Paper | Title | Page |
---|---|---|
WEXGBE3 | IBS Studies at BESSY II and MLS | 1755 |
|
||
Intrabeam Scattering (IBS) effects will become a limiting factor for the attainable emittances and single-bunch currents in future electron storage rings and light sources. IBS studies were performed for BESSY II at the Helmholtz-Zentrum Berlin (HZB) and for the Metrology Light Source (MLS) at the Physikalisch-Technische Bundesanstalt (PTB) to quantify the IBS contributions to equilibrium beam sizes in these machines and make predictions for the BESSY II upgrade project, BESSY VSR. The energy dependence of IBS effects (γ −4 ) makes especially the MLS machine susceptible to IBS effects due to the relatively low energy ranges at which it can be operated (50 MeV-630 MeV). We compare experimental data with simulations and present IBS simulation results for BESSY VSR. | ||
![]() |
Slides WEXGBE3 [0.916 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEXGBE3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF084 | Impact of RF Coupler Kicks on Beam Dynamics in BESSY VSR | 3182 |
|
||
The expected BESSY II upgrade to BESSY VSR requires the installation of a superconducting RF system, consisting of four cavities. Two cavities will operate at 1.5 GHz and two at 1.75 GHz. Each of them is equipped with a Fundamental Power Coupler and with Higher Order Mode (HOM) damping waveguide couplers. Dedicated simulations of these cavities and couplers have shown that at the location of the FPC the beam will see a transverse kick [*], perturbing the closed orbit and affecting transverse beam dynamics. We present the results of simulations and experiments of the impact on transverse beam dynamics of these coupler induced kicks for different FPC orientations.
[*] Study on RF Coupler Kicks of SRF Cavities in the BESSY VSR Module A. Tsakanian#, H.-W. Glock, T. Mertens, M. Ries, A. Velez, J. Knobloch IPAC18 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF084 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF030 | VSR Injector Upgrade at BESSY II | 4110 |
|
||
BESSY VSR is a fully funded project at the Helmholtz-Zentrum in Berlin (HZB). The objective is to produce simultaneously both long and short pulses in the storage ring. The implications for the existing injector systems and the upgrade strategy are presented. Envisaged is a global upgrade which includes additional accelerating structures to reduce the bunch length in the booster, orbit measurements and implementing longitudinal feedback. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF030 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |