Author: Ohshima, T.
Paper Title Page
WEPHA112 Database Scheme for On-Demand Beam Route Switching Operations at SACLA/SPring-8 1352
 
  • K. Okada, N. Hosoda, T. Ohshima, T. Sugimoto, M. Yamaga
    JASRI, Hyogo, Japan
  • T. Fujiwara, T. Maruyama, T. Ohshima, T. Okada
    RIKEN SPring-8 Center, Hyogo, Japan
  • T. Fukui, N. Hosoda, H. Maesaka
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • O. Morimoto, Y. Tajiri
    SES, Hyogo-pref., Japan
 
  At SACLA, the X-ray free electron laser (XFEL) facility, we have been operating the electron linac in time-sharing (equal duty) mode between beamlines. The next step is to vary the duty factor on an on-demand basis and to bring the beam into the SP8 storage ring. It is a part of a big picture of an upgrade*. The low-emittance beam is ideal for the next generation storage ring. In every 60 Hz repetition cycle, we have to deal a bunch of electrons properly. The challenge here is we must keep the beam quality for the XFEL demands while responding occasional injection requests from the storage ring**. This paper describes the database system that supports both SACLA/SP8 operations. The system is a combination of RDB and NoSQL databases. In the on-demand beam switching operation, the RDB part keeps the parameters to define sequences, which include a set of one-second route patterns, and a bucket sequence for the injection, etc. As for data analysis, it is going to be a post-process to build an event for a certain route, because not all equipment get the route command in real time. We present the preparation status toward the standard operation for beamline users.
*http://rsc.riken.jp/pdf/SPring-8-II.pdf
**IPAC2019 proceedings
 
poster icon Poster WEPHA112 [0.561 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA112  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAPP02 Development of the MTCA.4 I/O Cards for SPring-8 Upgrade and New 3 GeV Light Source 665
 
  • T. Fukui, N. Hosoda
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
  • E. Iwai, H. Maesaka, T. Ohshima
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  We will start a full energy injection from the SACLA to the SPring-8 from next year as a part of the SPring-8 upgrade. For this, we developed several I/O cards with the MTCA.4 form factor. One of the key issues is a timing synchronization between SACLA and SPring-8. We implemented required functions on the FPGA logic of a commercially available I/O card. We develop a module to distribute a trigger and clocks. We also developed cards used for the beam position monitor (BPM) and low-level RF system (LLRF). Those are included two types of cards. One is a 16-bit digitizer used for LLRF for the SPring-8 since 2018 march. We will use the card for the BPM with modified FPGA logic. Second is an implementation of functions with the pulsed RF signals processed on the FPGA logic of a commercially available card. These functions are used for the BPM of the beam transport line from the SACLA to SPring-8. The existing system is used 1 Hz beam repetition but we need more than 10 Hz to achieve an injection time less than 20 minutes to maximize user time. We will report the performance of the MTCA.4 cards, the upgrade plan of the SPring-8, and the construction of the 3 GeV Light Source.  
slides icon Slides TUAPP02 [7.123 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUAPP02  
About • paper received ※ 01 October 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)