Keyword: beam-diagnostic
Paper Title Other Keywords Page
MOPP042 Beam Diagnostics for the Multi-MW High Energy Beam Transport Line of DONES diagnostics, target, radiation, linac 200
 
  • I. Podadera, A. Ibarra, D. Jiménez-Rey, J. Mollá, C. Oliver, R. Varela, V. Villamayor
    CIEMAT, Madrid, Spain
  • O. Nomen, D. Sánchez-Herranz
    IREC, Sant Adria del Besos, Spain
 
  Funding: Work carried out within the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053.
In the frame of the material research for future fusion reactors, the construction of a simplified version of the IFMIF plant, the so-called DONES (Demo-Oriented Neutron Early Source), is under preparatory phase to allow materials testing with sufficient radiation damage for the new design of DEMO. The DONES accelerator system will deliver a deuteron beam at 40 MeV, 125 mA. The 5 MW beam will impact onto a lithium flow target to form an intense neutron source. One of the most critical tasks of the accelerator is the beam diagnostics along high energy beam transport, especially in the high radiation areas close to the lithium target. This instrumentation is essential to provide the relevant data for ensuring the high availability of the whole accelerator system, the beam characteristics and machine protection. Of outmost importance is the control of the beam characteristics impinging on the lithium curtain. Several challenging diagnostics are being designed and tested for that purpose. This contribution will report the present status of the design of the beam diagnostics, focusing on the high radiation areas of the high energy beam transport line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOPP042  
About • paper received ※ 04 September 2019       paper accepted ※ 07 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBO01 Screens for High Precision Measurements electron, radiation, diagnostics, detector 242
 
  • B. Walasek-Höhne, P. Forck
    GSI, Darmstadt, Germany
  • K. Hoehne
    FAIR, Darmstadt, Germany
  • R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • G. Kube
    DESY, Hamburg, Germany
 
  Funding: This project has received funding from the European Union¿s Horizon 2020 programme under Grant Agreement No 730871.
Scintillation screens made of various inorganic materials are widely used for transverse beam profile diagnostics at all kinds of accelerators. The monitor principle is based on the particles¿ energy loss and its conversion to visible light. The resulting light spot is a direct image of the two-dimensional beam distribution. For large beam sizes standard optical techniques can be applied, while for small beam sizes dedicated optical arrangements have to be used to prevent for image deformations. In the modern linac based light sources scintillator usage serves as an alternative way to overcome limitations related to coherent OTR emission. Radiation damages and intensity based saturation effects, in dependence of the screen material, have to be modelled. In this talk, an introduction to the scintillation mechanism in inorganic materials will be given including practical demands and limitations. An overview on actual applications at hadron and electron accelerators will be discussed as summary of the Joint ARIES-ADA Workshop on ¿Scintillation Screens and Optical Technology for transverse Profile Measurements¿ held in Kraków, Poland.
 
slides icon Slides TUBO01 [27.172 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUBO01  
About • paper received ※ 09 September 2019       paper accepted ※ 16 November 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP045 Development of an Automated BPM Test Bench controls, linac, instrumentation, diagnostics 651
 
  • M. Schwarz, H. Podlech
    IAP, Frankfurt am Main, Germany
  • H. Höltermann, B. Koubek, U. Ratzinger, W. Schweizer, D. Strehl, C. Trageser
    BEVATECH, Frankfurt, Germany
 
  The Institute for Applied Physics (IAP) of Goethe University Frankfurt has a long history in developing DTL-cavities and further essential components of particle accelerators from design and simulation up to tuning and final testing. In recent times, the development of beam diagnostic components for the hadron accelerator projects has become increasingly important. Bevatech is designing and setting up linear accelerators, RF and vacuum technology for research laboratories and enterprises worldwide. In a joint effort a simple, efficient and mobile beam position monitor (BPM) test bench has been developed and will be further improved for future tests and the calibration of beam position monitors. It is fully automated using single-board computers and microcontrollers to obtain the essential calibration data like electrical offset, button sensitivity and the 2D response map. In addition, initial tests with the implementation and evaluation of the Libera signal processing units Single Pass H and Spark were promising.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-WEPP045  
About • paper received ※ 03 September 2019       paper accepted ※ 10 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)