Keyword: background
Paper Title Other Keywords Page
SUPTEV009 Development of a New B-Mapping System for SRF Cavity Vertical Tests cavity, SRF, shielding, radiation 137
  • J.C. Wolff, A. Gössel, C. Müller, D. Reschke, L. Steder, D. Tischhauser
    DESY, Hamburg, Germany
  • W. Hillert, J.C. Wolff
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  Funding: This work was supported by the Helmholtz Association within the topic Accelerator Research and Development (ARD) of the Matter and Technologies (MT) Program.
Magnetic flux trapped in the Niobium bulk material of superconducting radio frequency (SRF) cavities degrades their quality factor and the accelerating gradient. The sensitivity of the cavity to trapped magnetic flux is mainly determined by the treatment, the geometry and the Niobium grain size and orientation. To potentially improve the flux expulsion characteristics of SRF cavities and hence the efficiency of future accelerator facilities, further studies of the trapping behavior are essential. For this purpose a so-called B-mapping system to monitor the magnetic flux along the outer cavity surface of 1.3 GHz TESLA-Type single-cell SRF cavities is currently under development at DESY. Contrary to former approaches, this system digitizes the sensor signals already inside of the cryostat to extensively reduce the number of required cable feedthroughs. Furthermore, the signal-to-noise ratio (SNR) and consequently the measuring sensitivity can be enhanced by shorter analog signal lines, less thermal noise and the Mu-metal shielding of the cryostat. In this contribution the design, the development process as well as first performance test results of the B-mapping system are presented.
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPTEV009  
About • Received ※ 01 July 2021 — Accepted ※ 31 March 2022 — Issue date ※ 09 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPCAV001 Study of the Niobium Oxide Structure and Microscopic Effect of Plasma Processing on the Niobium Surface plasma, niobium, cavity, ECR 585
  • B. Giaccone, M. Martinello
    Fermilab, Batavia, Illinois, USA
  • B. Giaccone, J. Zasadzinski
    IIT, Chicago, Illinois, USA
  A study of the niobium oxide structure is presented here, with particular focus on the niobium suboxides. Multiple steps of argon sputtering and XPS measurements were carried out until the metal surface was exposed. The sample was then exposed to air and the oxide regrowth was studied. In addition, three Nb samples prepared with different surface treatments were studied before and after being subjected to plasma processing. The scope is investigating the microscopic effect that the reactive oxygen contained in the glow discharge may have on the niobium surface. This study suggests that the Nb2O5 thickness may increase, although no negative change in the cavity performance is measured since the pentoxide is a dielectric.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPCAV001  
About • Received ※ 22 June 2021 — Revised ※ 13 September 2021 — Accepted ※ 13 January 2022 — Issue date ※ 16 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)