Paper | Title | Page |
---|---|---|
SUPCAV007 | Thick Film Morphology and SC Characterizations of 6 GHz Nb/Cu Cavities | 18 |
|
||
Funding: European Union’s H2020 Framework Programme under Grant Agreement no. 764879 Thick films deposited in long pulse DCMS mode onto 6 GHz copper cavities have demonstrated the mitigation of the Q-slope at low accelerating fields. The Nb thick films (~40 microns) show the possibility to reproduce the bulk niobium superconducting properties and morpholo-gy characterizations exhibited dense and void-free films that are encouraging for the scaling of the process to 1.3 GHz cavities. In this work a full characterization of thick films by DC magnetometry, computer tomography, SEM and RF characterizations are presented. |
||
![]() |
Poster SUPCAV007 [1.012 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV007 | |
About • | Received ※ 21 June 2021 — Revised ※ 07 July 2021 — Accepted ※ 16 February 2022 — Issue date ※ 08 April 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
SUPTEV002 | Application of Plasma Electrolytic Polishing onto SRF Substrates | 116 |
|
||
Funding: Work supported by the INFN CSNV experiment TEFEN. This project has received funding from the Euro-pean Union’s Horizon 2020 Research and Innovation programme under GA No 101004730. A new promising approach of SRF substrates surface treatment has been studied - Plasma Electrolytic Polishing (PEP). The possible application of PEP can be used not only on conventional elliptical resonators, but also on other components of SRF such as, for example, couplers or Quadrupole resonators (QPRs). However, SRF application of PEP represents a challenge since it requires a different approach to treat the inner surface of elliptical cavities respect to electropolishing. In this work, the main problematics and possible solutions, the equipment, and the polishing system requirements will be shown. A proposed polishing system for 6 GHz elliptical cavities and QPRs will be shown and discussed. |
||
![]() |
Poster SUPTEV002 [2.715 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPTEV002 | |
About • | Received ※ 21 June 2021 — Revised ※ 08 July 2021 — Accepted ※ 12 August 2021 — Issue date ※ 22 April 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPCAV006 | Nb3Sn Films Depositions from Targets Synthesized via Liquid Tin Diffusion | 452 |
|
||
The deposition of Nb3Sn on copper cavities is inter-esting for the higher thermal conductivity of copper compared to common Nb substrates. The better heat exchange would allow the use of cryocoolers reducing cryogenic costs and the risk of thermal quench [1]. Magnetron sputtering technology allows the deposi-tion of Nb3Sn on substrates different than Nb, however the coating of substrates with complex geometry (such as elliptical cavities) may require targets with non-planar shape, difficult to realize with classic powder sintering techniques. In this work, the possibility of using the Liquid Tin Diffusion (LTD) technique to produce sputtering targets is explored. The LTD tech-nique is a wire fabrication technology, already devel-oped in the past at LNL for SRF applications [2], that allows the deposition of very thick and uniform coat-ing on Nb substrates even with complex geometry [3]. Improvements in LTD process, proof of concept of a single use LTD target production, and characterization of the Nb3Sn film coated by DC magnetron sputtering with these innovative targets are reported in this work. | ||
![]() |
Poster TUPCAV006 [5.037 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV006 | |
About • | Received ※ 21 June 2021 — Revised ※ 12 July 2021 — Accepted ※ 23 August 2021 — Issue date ※ 02 September 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |