Author: Yakovlev, V.P.
Paper Title Page
MOPTEV009 A Method for In-Situ Q0 Measurements of High-Quality SRF Resonators 221
 
  • S.V. Kuzikov, P.V. Avrakhov, C.-J. Jing, R.A. Kostin, Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
  • C.-J. Jing, C.-J. Jing
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, R.A. Kostin
    Euclid Beamlabs, Bolingbrook, USA
  • R.A. Kostin, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • T. Powers, R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  Funding: The work was supported in the part by DoE SBIR grant #DE-SC0019687.
Accelerator projects such as LCLS-II naturally require low-loss superconducting (SRF) cavities. Due to strong demand for improving intrinsic quality factor (Q0), importance of accurate cavity characterization increases. We propose a method to measure Q0 in situ for an SRF resonator installed in its cryogenic module and connected with a RF feed source via a fixed RF coupler. The method exploits measurements of a response for an SRF resonator fed by an amplitude-modulated signal. Such a signal can be synthesized as a beat-wave composed of two frequencies that are close to the resonant frequency. Analyzing the envelope of the reflected signal, one can find the difference in reflection for the chosen frequencies and use them to compute the intrinsic Q. We also develop the methodology to carry out measurements of Q0 at the nominal cavity operating voltage. We verified our method in experiments with a room temperature copper resonator and with two SRF resonators including Fermilab’s 650 MHz cavity and JLab’s 1500 MHz cavity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPTEV009  
About • Received ※ 15 June 2021 — Revised ※ 26 August 2021 — Accepted ※ 19 February 2022 — Issue date ※ 06 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPCAV013 STC Qualification Tests of PIP-II HB650 Cavities 465
 
  • A.I. Sukhanov, S.K. Chandrasekaran, G.V. Eremeev, F. Furuta, S. Kazakov, T.N. Khabiboulline, T.H. Nicol, Y.M. Pischalnikov, O.V. Prokofiev, V. Roger, G. Wu, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
 
  Design of the high beta 650 MHz prototype cryomodule for PIP-II is currently undergoing at Fermilab. The cryomodule includes six 5-cell elliptical SRF cavities with accelerating voltage up to 20 MV and low heat dissipation (Q0 > 3.3 · 10zEhNZeHn). Characterization of performance of fully integrated jacketed cavities with high power coupler and tuner is crucial for the project. Such a characterization of jacketed cavity requires a horizontal test cryostat. The Fermilab Spoke Test Cryostat (STC) has been upgraded to accommodate testing of 650 MHz cavities. Commissioning of upgraded STC has been reported at SRF’19 conference. In this paper we present results of testing of the prototype HB650 cavity in upgraded STC facility. We characterize cavity performance and qualify it for the prototype HB650 cryomodule assembly.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV013  
About • Received ※ 21 June 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPCAV008 A Fast Mechanical Tuner for SRF Cavities 600
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  There is a particular need for fast tuners and phase shifters for advanced superconducting accelerator RF systems. The tuners based on ferrite, ferroelectric and piezo materials are commonly used. However, those methods suffer from one or another issue of high power loss, slow response, and narrow tuning range. We propose a robust, fast (up to ~5 MHz/sec), high efficient mechanical tuner for SRF cavities operating at the frequency 50 MHz. We develop an external mechanical tuner that is strongly coupled to the cavity. The tuner design represents a trade-off of high efficiency (low RF losses and low heat flux) and frequency tunability range. Our approach solves this trade-off issue. We propose RF design which exploits two coupled resonators so that a main high-field cavity is controlled with a small tunable resonator with a flexible metallic wall operating in a relatively low RF field. Simulations, carried out for a 7.5 MV/m 50 MHz SRF Quarter Wave Resonator (QWR), show that frequency tunability at level 10-3 is obtainable.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPCAV008  
About • Received ※ 17 June 2021 — Revised ※ 06 August 2021 — Accepted ※ 22 November 2021 — Issue date ※ 04 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCAV04 Optimization of a Traveling Wave SRF Cavity for Upgrading the International Linear Collider 694
 
  • V.D. Shemelin
    Valery D Shemelin, Freeville, USA
  • H. Padamsee
    Cornell University, Ithaca, New York, USA
  • H. Padamsee, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  The Standing Wave TESLA Niobium-based structure is limited to a gradient of about 50 MV/m by the critical RF magnetic field. To break through this barrier, we explore the option of Niobium-based traveling wave (TW) structures. Optimization of TW structures was done taking into account experimentally known limiting electric and magnetic fields. It is shown that a TW structure can have an accelerating gradient above 70 MeV/m that is about 1.5 times higher than contemporary standing wave structures with the same critical magnetic field. The other benefit of TW structures shown is R/Q about 2 times higher than TESLA structure that reduces 2 times the dynamic heat load. A method is proposed how to make TW structures multipactor-free. Some design proposals can be realized to facilitate fabrication. Further increase of the real-estate gradient (equivalent to 80 MV/m active gradient) is also possible by increasing the length of the accelerating structure because of higher group velocity and cell-to-cell coupling. Realization of this work opens paths to ILC energy upgrades beyond 1 TeV to 3 TeV in competition with CLIC. The paper will discuss corresponding opportunities and challenges.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
slides icon Slides WEOCAV04 [3.672 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEOCAV04  
About • Received ※ 15 June 2021 — Accepted ※ 24 October 2021 — Issue date ※ 16 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)