Paper | Title | Page |
---|---|---|
TUPTEV009 | Seamless 1.3 GHz Copper Cavities for Nb Coatings: Cold Test Results of Two Different Approaches | 498 |
|
||
A necessary condition for high SRF performances in thin film coated cavities is the absence of substrate defects. For instance, in the past, defects originated around electron beam welds in high magnetic field areas have been shown to be the cause of performance limitations in Nb/Cu cavities. Seamless cavities are therefore good candidates to allow an optimization of the coating parameters without the pitfalls of a changing substrate. In this work, we present the first results of two different methods to produce seamless cavities applied to 1.3 GHz copper single cells coated with thin Nb films by means of HIPIMS. A first method consists in electroplating the copper resonator on precisely machined aluminum mandrels, which are then dissolved chemically. As an alternative and a cross check, one cavity was machined directly from the bulk. Both cavities were coated with HIPIMS Nb films using the same coating parameters and the SRF performance was measured down to 1.8 K with a variable coupler to minimize the measurement uncertainty. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPTEV009 | |
About • | Received ※ 21 June 2021 — Revised ※ 28 October 2021 — Accepted ※ 18 November 2021 — Issue date ※ 10 February 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPFDV007 | Main Highlights of ARIES WP15 Collaboration | 571 |
|
||
Funding: European Commission’s ARIES collaboration H2020 Research and Innovation Programme under Grant Agreement no. 730871 An international collaboration of research teams from CEA (France), CERN (Switzerland), INFN/LNL (Italy), HZB and USI (Germany), IEE (Slovakia), RTU (Latvia) and STFC/DL (UK), are working together on better understanding of how to improve the properties of superconducting thin films (ScTF) for RF cavities. The collaboration has been formed as WP15 in the H2020 ARIES project funded by EC. The systematic study of ScTF covers: Cu substrate polishing with different techniques (EP, SUBU, EP+SUBU, tumbling, laser), Nb, NbN, Nb3Sn and SIS film deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application of all obtained knowledge on polishing, deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application to the QPR samples for testing the films at RF conditions. The preparation, deposition and characterisation of each sample involves 3-5 partners enhancing the capability of each other and resulting in a more complete analysis of each film. The talk will give an overview of the collaborative research and will be an introduction to the detailed talks given by the team members. |
||
![]() |
Poster WEPFDV007 [2.013 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPFDV007 | |
About • | Received ※ 19 June 2021 — Accepted ※ 12 February 2022 — Issue date ※ 10 April 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FROFDV06 | Synthesis of Nb and Alternative Superconducting Film to Nb for SRF Cavity as Single Layer | 893 |
|
||
"Bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavities but for further improvement in cavity RF performance, one may have to turn to films of Nb and to other superconducting materials deposited on copper as thermal and mechanical support. Other materials known as A15, such as Nb3Sn or V3Si and B1 such as NbTiN and NbN are much easier to synthesise in thin films rather than being made as bulk cavity. The potential benefits of using materials other than Nb would be a higher Tc, a potentially higher critical held Hc, leading to potentially significant cryogenics cost reduction if the cavity operation temperature is 4.2 K or higher. We report on optimising deposition parameters and effect of substrate treatment prior to deposition for successful synthesising of Nb and the alternative superconducting thin film with high superconducting properties (Tc and Hsh) on flat substrates and QPR samples in single layer. The DC and RF SC properties have been tested using PPMS and QPR measurements. This work is part of the H2020 ARIES collaboration. We further report on preparation of RF cavities employing these alternative material for future cavity production." | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-FROFDV06 | |
About • | Received ※ 21 June 2021 — Accepted ※ 05 January 2022 — Issue date ※ 28 April 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |