Author: Venturini Delsolaro, W.
Paper Title Page
TUPTEV009 Seamless 1.3 GHz Copper Cavities for Nb Coatings: Cold Test Results of Two Different Approaches 498
 
  • L. Vega Cid, S. Atieh, L.M.A. Ferreira, L. Laín-Amador, C. Pereira Carlos, G.J. Rosaz, K. Scibor, W. Venturini Delsolaro, P. Vidal García
    CERN, Meyrin, Switzerland
  • S.B. Leith
    University Siegen, Siegen, Germany
 
  A necessary condition for high SRF performances in thin film coated cavities is the absence of substrate defects. For instance, in the past, defects originated around electron beam welds in high magnetic field areas have been shown to be the cause of performance limitations in Nb/Cu cavities. Seamless cavities are therefore good candidates to allow an optimization of the coating parameters without the pitfalls of a changing substrate. In this work, we present the first results of two different methods to produce seamless cavities applied to 1.3 GHz copper single cells coated with thin Nb films by means of HIPIMS. A first method consists in electroplating the copper resonator on precisely machined aluminum mandrels, which are then dissolved chemically. As an alternative and a cross check, one cavity was machined directly from the bulk. Both cavities were coated with HIPIMS Nb films using the same coating parameters and the SRF performance was measured down to 1.8 K with a variable coupler to minimize the measurement uncertainty.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPTEV009  
About • Received ※ 21 June 2021 — Revised ※ 28 October 2021 — Accepted ※ 18 November 2021 — Issue date ※ 10 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPFDV007 Main Highlights of ARIES WP15 Collaboration 571
 
  • O.B. Malyshev, P. Goudket, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.Z. Antoine
    CEA-IRFU, Gif-sur-Yvette, France
  • O. Azzolini, E. Chyhyrynets, G. Keppel, C. Pira, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • G. Burt, D.J. Seal, D.A. Turner
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G. Burt, B.S. Sian
    Lancaster University, Lancaster, United Kingdom
  • O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • S.B. Leith, A.Ö. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • A. Medvids, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • R. Ries, E. Seiler
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
  • B.S. Sian
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Sublet, G. Vandoni, L. Vega Cid, W. Venturini Delsolaro, P. Vidal García
    CERN, Meyrin, Switzerland
  • D.A. Turner
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: European Commission’s ARIES collaboration H2020 Research and Innovation Programme under Grant Agreement no. 730871
An international collaboration of research teams from CEA (France), CERN (Switzerland), INFN/LNL (Italy), HZB and USI (Germany), IEE (Slovakia), RTU (Latvia) and STFC/DL (UK), are working together on better understanding of how to improve the properties of superconducting thin films (ScTF) for RF cavities. The collaboration has been formed as WP15 in the H2020 ARIES project funded by EC. The systematic study of ScTF covers: Cu substrate polishing with different techniques (EP, SUBU, EP+SUBU, tumbling, laser), Nb, NbN, Nb3Sn and SIS film deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application of all obtained knowledge on polishing, deposition and characterisation, Laser post deposition treatments, DC magnetisation characterisation, application to the QPR samples for testing the films at RF conditions. The preparation, deposition and characterisation of each sample involves 3-5 partners enhancing the capability of each other and resulting in a more complete analysis of each film. The talk will give an overview of the collaborative research and will be an introduction to the detailed talks given by the team members.
 
poster icon Poster WEPFDV007 [2.013 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPFDV007  
About • Received ※ 19 June 2021 — Accepted ※ 12 February 2022 — Issue date ※ 10 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOTEV05
Ferro-Electric Fast Reactive Tuners for SRF  
 
  • N.C. Shipman, M.R. Coly, F. Gerigk, A. Macpherson, N. Stapley, D. Valuch, W. Venturini Delsolaro
    CERN, Meyrin, Switzerland
  • I. Ben-Zvi
    BNL, Upton, New York, USA
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, Solon, Ohio, USA
 
  A Ferro-Electric Fast Reactive Tuner (FE-FRT) is a new type of tuner, utilising a novel ferro-electric material, which can change the frequency of an RF cavity on the sub-microsecond timescale and has the potential to reduce a cavity’s RF power requirements by an order of magnitude in some cases. During operation, power is continuously coupled out of the cavity, through the tuner, and reflected back into the cavity. By applying a high voltage across a ferro-electric within the tuner, the reactive load seen by the cavity is altered which causes a frequency shift in the cavity. The extremely fast response times of FE-FRTs make them especially suited to the correction of frequency variations caused by microphonics. New closed loop tuning measurements at CERN with a prototype FE-FRT and superconducting RF cavity have recently demonstrated excellent suppression of the cavity’s microphonics. The experimental set-up and the recent test results will be presented and the capabilities of this approach contrasted with more common systems, such as piezoelectric based tuners.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPFAV006 Degradation and Recovery of the LHC RF Cryomodule Performance Using the Helium Processing Technique 746
 
  • K. Turaj, O. Brunner, A.C. Butterworth, F. Gerigk, P. Maesen, E. Montesinos, F. Peauger, M. Therasse, W. Venturini Delsolaro
    CERN, Meyrin, Switzerland
 
  The LHC RF cryomodule "Asia" suffered an accidental influx of about 0.5 l of tunnel air during the leak checks of the pumping manifolds. The resulting risk of particle contamination was difficult to assess, and could not be excluded with certainty. If one or more cavities were contaminated, a severe impact on beam operations in the LHC machine was to be expected. In order to minimize the risks, the Asia cryomodule has been replaced with a spare unit. Subsequently, the cryomodule was tested in the SM18 test facility without intermediate venting, and showed high levels of radiation due to field emission above 1.8 MV in one of the cavities. The other cavities were less strongly affected, but clear signs of contamination were observed. The helium processing technique was used to improve the performance of the SRF cavity with respect to field emission. This paper will discuss the results of the above-mentioned test.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFAV006  
About • Received ※ 21 June 2021 — Revised ※ 14 January 2022 — Accepted ※ 27 April 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPCAV007 Thermal Mapping Studies on Nb/Su SRF Cavities 796
 
  • A. Bianchi, M. Chiodini, G. Vandoni, W. Venturini Delsolaro
    CERN, Meyrin, Switzerland
 
  A thermal mapping system is one of the most useful diagnostic tools to identify the mechanisms responsible of performance degradation in superconducting radio frequency (SRF) cavities. Unlike most of the thermal mapping systems currently in operation, we want to develop a system for mapping copper coated SRF cavities. This thermal mapping system, based on contact thermometry, will operate in both superfluid and normal liquid helium for the study of thin film cavities on copper built at CERN. This paper describes the R&D studies to design and develop the system. The characterisation of thermometers and the validation of their thermal contact are presented. Thanks to the use of some heaters with the aim of reproducing the presence of heat losses in a SRF cavity, temperature profiles on a copper surface will be shown at different conditions of the helium bath. In addition, preliminary results on magnetic field sensors, based on the anisotropic magnetoresistance effect, will be reported in view of their possible implementation in the thermal mapping system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPCAV007  
About • Received ※ 18 June 2021 — Revised ※ 23 August 2021 — Accepted ※ 25 November 2021 — Issue date ※ 12 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROFDV06 Synthesis of Nb and Alternative Superconducting Film to Nb for SRF Cavity as Single Layer 893
 
  • R. Valizadeh, P. Goudket, A.N. Hannah, O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.Z. Antoine
    CEA-DRF-IRFU, France
  • C.Z. Antoine
    CEA-IRFU, Gif-sur-Yvette, France
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • P. Goudket, O.B. Malyshev, D.J. Seal, B.S. Sian, D.A. Turner
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • S.B. Leith, A.Ö. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • A. Medvids, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • D.J. Seal, B.S. Sian, D.A. Turner
    Lancaster University, Lancaster, United Kingdom
  • G.B.G. Stenning
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • A. Sublet, G. Vandoni, L. Vega Cid, W. Venturini Delsolaro, P. Vidal García
    CERN, Meyrin, Switzerland
 
  "Bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavities but for further improvement in cavity RF performance, one may have to turn to films of Nb and to other superconducting materials deposited on copper as thermal and mechanical support. Other materials known as A15, such as Nb3Sn or V3Si and B1 such as NbTiN and NbN are much easier to synthesise in thin films rather than being made as bulk cavity. The potential benefits of using materials other than Nb would be a higher Tc, a potentially higher critical held Hc, leading to potentially significant cryogenics cost reduction if the cavity operation temperature is 4.2 K or higher. We report on optimising deposition parameters and effect of substrate treatment prior to deposition for successful synthesising of Nb and the alternative superconducting thin film with high superconducting properties (Tc and Hsh) on flat substrates and QPR samples in single layer. The DC and RF SC properties have been tested using PPMS and QPR measurements. This work is part of the H2020 ARIES collaboration. We further report on preparation of RF cavities employing these alternative material for future cavity production."  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-FROFDV06  
About • Received ※ 21 June 2021 — Accepted ※ 05 January 2022 — Issue date ※ 28 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)