Paper | Title | Page |
---|---|---|
MOOFAV10 | Completion of FRIB Superconducting Linac and Phased Beam Commissioning | 197 |
|
||
Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. The Facility for Rare Isotope Beams (FRIB) is an ac-celerator-based facility funded by the US Department of Energy for nuclear physics research. FRIB is nearing the end of technical construction, with first user beams ex-pected in Summer 2022. Key features are the delivery of a variety of rare isotopes with a beam energy of ’ 200 MeV/u and a beam power of up to 400 kW. The facility is upgradable to 400 MeV/u and multi-user capability. The FRIB driver linac consists of 324 superconducting resonators and 69 superconducting solenoids in 46 cry-omodules. FRIB is the first linac to deploy a large number of HWRs (220) and the first heavy ion linac to operate at 2 K. We report on the completion of production and in-stallation of the FRIB cryomodules and phased beam commissioning results. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOOFAV10 | |
About • | Received ※ 12 August 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPFAV004 | Solenoid Automatic Turn-On and Degaussing for FRIB Cryomodules | 737 |
|
||
The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) will accelerate heavy ions to 200 MeV per nucleon. The linac includes 46 SRF cryomodules, with a total of 69 solenoid packages for beam focusing and steering. For efficient beam commissioning and future operation, all of the solenoids must be turned on and reach a stable operating condition in a short time. Additionally, when a warm-up of the cryomodules is needed, degaussing of the solenoid packages is needed to minimize the residual magnetic field in the SRF cavities. An automatic turn-on and degaussing program had been implemented for FRIB cryomodules to meet these requirements. This paper will describe the design, development, and implementation of the automated solenoid control program. | ||
![]() |
Poster THPFAV004 [1.863 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFAV004 | |
About • | Received ※ 21 June 2021 — Revised ※ 19 September 2021 — Accepted ※ 15 December 2021 — Issue date ※ 01 March 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |