Author: Xu, P.
Paper Title Page
MOP041 Comparison of the Lattice Thermal Conductivity of Superconducting Tantalum and Niobium 148
 
  • P. Xu, N.T. Wright
    MSU, East Lansing, Michigan, USA
  • T.R. Bieler
    Michigan State University, East Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of High Energy Physics through Grant No. DE-FG02-13ER41974.
The thermal conductivity k of superconducting Ta behaves similarly to that of superconducting Nb, albeit at colder temperatures. This shift is due to the superconducting transition temperature of Ta being 4.3 K, versus 9.25 K for Nb. For example, the temperature of the phonon peak of properly treated Ta is about 1 K as opposed to a phonon peak at about 2 K for Nb. The typical value of k of Ta is smaller than Nb with the value at the phonon peak for Ta being O(10) W/ m/ K. Like Nb, k is dominated by phonons at these temperatures. This lattice k can be modeled by the Boltzmann transport equation, solved here by a Monte Carlo method using the relaxation time approximation. Individual scattering mechanisms due to boundaries, dislocations, and residual normal electrons are examined, and the phonon dispersion relation is included. Differences in the thermal response of deformed Ta, as compared with Nb, may be attributed to differences in dislocation densities of the two metals following similar levels of deformation. Boundary scattering dominates at the coldest temperatures. The phonon peak decreases and shifts to warmer temperatures with deformation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP041  
About • paper received ※ 19 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)