Paper | Title | Page |
---|---|---|
MOP023 | Nitrogen Infusion Sample R&D at DESY | 77 |
SUSP002 | use link to see paper's listing under its alternate paper code | |
|
||
The European XFEL continuous wave upgrade requires cavities with reduced surface resistance (high Q-values) for high duty cycle while maintaining high accelerating gradient for short-pulse operation. A possible way to meet the requirements is the so-called nitrogen infusion procedure. However, a fundamental understanding and a theoretical model of this method are still missing. The approach shown here is based on sample R&D, with the goal to identify key parameters of the process and establish a stable, reproducible recipe. To understand the underlying processes of the surface evolution, which gives improved cavity performance, advanced surface analysis techniques (e.g. SEM/EDX, TEM, XPS, TOF-SIMS) are utilized. Additionally, a small furnace just for samples was set up to change and explore the parameter space of the infusion recipe. Results of these analyses, their implications for the cavity R&D and next steps are presented. | ||
![]() |
Poster MOP023 [3.759 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP023 | |
About • | paper received ※ 23 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP024 | Vacancy-Hydrogen Dynamics in Samples During Low Temperature Baking | 83 |
|
||
Funding: This work was supported by the Helmholtz Association within the topic Accelerator Research and Development (ARD) of the Matter and Technologies (MT) Program and by the BMBF under the research grant 05H18GURB1. The recent discovery of a modified low temperature baking process lead to a reduction of surface losses and an increase of the accelerating gradient of TESLA shape cavities. The hypothesis linking the accelerator performance and the treatment is the suppression of lossy nanohydrides via defect trapping, with vacancy-hydrogen complexes forming at the lower temperatures. Utilizing Doppler broadening Positron Annihilation Spectroscopy and Positron Annihilation Lifetime Spectroscopy samples made from European XFEL niobium sheets and cavity cut-outs were investigated. The evolution of vacancies, hydrogen and their interaction at different temperature levels have been studied during in-situ annealing. Measurements of niobium samples and a correlation between RF, material properties, and V-H distribution in cavity cut-outs has been done. |
||
![]() |
Poster MOP024 [1.087 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP024 | |
About • | paper received ※ 20 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP034 | European XFEL: Accelerating Module Repair at DESY | 127 |
|
||
The European XFEL is in operation since 2017. The design projected energy of 17.5 GeV was reached, even with the last 4 main linac accelerating modules not yet installed. 2 out of 4 not installed modules did suffer from strong cavity performance degradation, namely increased field emission, and required surface processing. The first of two modules is reassembled and tested. The module test results confirm a successful repair action. The module repair and test steps are described together with cavities performance evolution. | ||
![]() |
Poster MOP034 [1.863 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP034 | |
About • | paper received ※ 17 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUFUA6 |
Surface Analysis of Niobium After Thermal/Gas Treatments via Samples - Review | |
|
||
Thermal treatments of SRF Nb cavities - including the well-established 120°C bake and the recently reported N-infusion - are shown to improve the cavity performance significantly; however, the underlying physical phenomenon is not fully understood. A short review will be presented on surface characterization of niobium material subjected to various thermal and gas exposure protocols and how the findings correlate with observed SRF properties. Moreover, recent results obtained on single-crystal Nb samples - heated in different vacuum environments and characterised by means of X-ray photoelectron spectroscopy and grazing-incidence X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy and time-of-flight secondary ion mass spectroscopy will be discussed. | ||
![]() |
Slides TUFUA6 [6.968 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP080 | Status of the All Superconducting Gun Cavity at DESY | 1087 |
|
||
At DESY, the development of a 1.6-cell, 1.3 GHz all superconducting gun cavity with a lead cathode attached to its back wall is ongoing. The special features of the structure like the back wall of the half-cell and cathode hole require adaptations of the procedures used for the treatment of nine-cell TESLA cavities. Unsatisfactory test results of two prototype cavities motivated us to re-consider the back-wall design and production steps. In this contribution we present the status of the modified cavity design including accessories causing accelerating field asymmetries, like a pick up antenna located at the back wall and fundamental power- and HOM couplers. Additionally, we discuss preliminary considerations for the compensation of kicks caused by these components. | ||
![]() |
Poster THP080 [7.365 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP080 | |
About • | paper received ※ 20 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |