Author: Vandoni, G.
Paper Title Page
THP105 Thermal Mapping of SRF Cavities by Second Sound Detection With Transition Edge Sensors and Oscillating Superleak Transducers 1182
 
  • G. Vandoni, T. Koettig, A. Macpherson, K. Turaj, L. Vega Cid
    CERN, Geneva, Switzerland
  • H. Furci
    EPFL, Lausanne, Switzerland
 
  The SRF cavity testing facilities at CERN include four vertical cryostat stations in SM18 and a cryostat for small cavities in the Cryolab. A large range of structures are tested, from Nb thin film cavities for HIE-Isolde and LHC, to bulk Nb crab cavities for HiLumi or 704 MHz 5-cell high-gradient cavities. To cope with different shapes and small series tests, thermal mapping diagnostics is deployed by sensing second sound in superfluid helium. A new type of Transition Edge Sensors (TES) has been developed in the last 2 years. These are miniature resistors of thin-film superconducting alloys, micro-produced on insulating wafers. An extensive campaign of optimization of design, fabrication process and composition was accompanied by qualification in a calibration cryostat. Reproducibility, stability, then intensity, distance and angular dependence of the response were assessed and compared to Oscillating Superleak Transducers (OST). The TES were then installed in a vertical cryostat for tests of a prototype crab cavity for HiLumi. TES are now applied to quench localization on high gradient cavities, for which the most recent results will be presented, together with the OST results.  
poster icon Poster THP105 [2.186 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP105  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP106 An SRF Test Stand in High Intensity and High Energy Proton Beams 1187
 
  • G. Vandoni, K. Artoos, V. Baglin, K. Brodzinski, R. Calaga, O. Capatina, S.D. Claudet, L.P. Delprat, S. Mehanneche, E. Montesinos, C. Pasquino, J.S. Swieszek
    CERN, Geneva, Switzerland
 
  In the framework of HL-LHC, a new infrastructure was installed in 2018, to test SRF structures in the proton beams of the SPS. Scope of the test stand is to study the operational performance of crab cavities for HL-LHC – more generally, SRF cavities – through a wide range of proton beam parameters up to high energy and current, under safe conditions for equipment and personnel. The SPS beam instrumentation is used to monitor orbit centering, RF phase scans, bunch rotation. To minimize impact on beam time, infrastructure and services allow for full remote control. Critical aperture restrictions is overcome by placing the test structure and its ancillaries on a motorized table for lateral translation in- and out of beam. Two articulated Y-shaped vacuum chambers connect the test cryomodule on a beam by-pass. A new cryogenic refrigerator is installed in a split scheme, with an underground cold box fed from a surface compressor. The two Inductive Output Tubes (IOT) power amplifiers deliver up to 60 kW cw via coaxial transmission lines to the two cavities and charges and circulators, the latter installed on the translation table. Interlocks and safety equipment complete the test stand.  
poster icon Poster THP106 [3.982 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP106  
About • paper received ※ 23 June 2019       paper accepted ※ 01 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)