Author: Tamura, J.
Paper Title Page
MOP027 Study on Nitrogen Infusion using KEK New Furnace 95
 
  • K. Umemori, E. Kako, T. Konomi, S. Michizono, H. Sakai
    KEK, Ibaraki, Japan
  • T. Okada
    Sokendai, Ibaraki, Japan
  • J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  KEK has been carried out high-Q/high-G R&D, to realize high performance of SRF cavities toward ILC. KEK constructed a new furnace, which is dedicated for N-infusion studies. We performed more than 10 times of N-infusion trials using 1.3 GHz single-cell cavities. Some results showed better Q-values up to high field, however, some results showed degraded Q-E slopes probably due to contamination. Improvement of accelerating gradient is not observed at moment. We have tried to clean the furnace and Nitrogen injection line to reduce the effect of contamination. Details of procedures of N-infusion, results of vertical tests, condition of the furnace including RGA spectrum and Nb sample analysis results are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP027  
About • paper received ※ 04 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP007 Electromagnetic Design of the Prototype Spoke Cavity for the JAEA-ADS Linac 399
 
  • J. Tamura, K. Hasegawa, Y. Kondo, F.M. Maekawa, S.I. Meigo, B. Yee-Rendón
    JAEA/J-PARC, Tokai-mura, Japan
  • E. Kako, T. Konomi, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
 
  The Japan Atomic Energy Agency (JAEA) is proposing an accelerator-driven subcritical system (ADS) as a future project to transmute long-lived nuclides to short-lived or stable ones. In the JAEA-ADS, a high-power proton beam of 30 MW with a final beam energy of 1.5 GeV is required with a high reliability. Furthermore, the accelerator needs to be operated in a continuous wave mode in order to be compatible with the reactor operation. As the first step toward the detailed design of the JAEA-ADS linac, we are planning to demonstrate a high-field measurement by prototyping a low-beta single spoke resonator (SSR1). We performed the electromagnetic design, and confirmed that the cavity performances of the SSR1 model with and without dimensional constraint.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP007  
About • paper received ※ 02 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)