Author: Okada, T.
Paper Title Page
MOP027 Study on Nitrogen Infusion using KEK New Furnace 95
 
  • K. Umemori, E. Kako, T. Konomi, S. Michizono, H. Sakai
    KEK, Ibaraki, Japan
  • T. Okada
    Sokendai, Ibaraki, Japan
  • J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  KEK has been carried out high-Q/high-G R&D, to realize high performance of SRF cavities toward ILC. KEK constructed a new furnace, which is dedicated for N-infusion studies. We performed more than 10 times of N-infusion trials using 1.3 GHz single-cell cavities. Some results showed better Q-values up to high field, however, some results showed degraded Q-E slopes probably due to contamination. Improvement of accelerating gradient is not observed at moment. We have tried to clean the furnace and Nitrogen injection line to reduce the effect of contamination. Details of procedures of N-infusion, results of vertical tests, condition of the furnace including RGA spectrum and Nb sample analysis results are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP027  
About • paper received ※ 04 July 2019       paper accepted ※ 04 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP060 Development of Temperature and Magnetic Field Mapping System for Superconducting Cavities at KEK 583
SUSP019   use link to see paper's listing under its alternate paper code  
 
  • T. Okada, E. Kako, T. Konomi, H. Sakai, K. Umemori
    Sokendai, Ibaraki, Japan
  • E. Kako, T. Konomi, M. Masuzawa, H. Sakai, K. Tsuchiya, R. Ueki, K. Umemori
    KEK, Ibaraki, Japan
  • A. Poudel, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  A temperature and magnetic field mapping system for a single cell superconducting cavity is being developed at KEK. The mapping system is used to observe the temperature distribution and the ambient magnetic field distribution around the outer surface of the cavity. A total of 36 boards at every 10 degrees are attached on the cavity. Each board consists of 15 carbon resistors of 100 Ω at room temperature and 3 AMR sensors of X, Y and Z directions at the equator. The calibration of the resisters and AMR sensors were carefully and precisely carried out at low temperature. The data logging system using NI loggers is enabled to measure within 1 ms in the whole cavity surface. The initial test results in the vertical test of the single-cell cavity will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP060  
About • paper received ※ 05 July 2019       paper accepted ※ 05 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)